Based on the satellite data from the Climate Prediction Center morphing(CMORPH) at very high spatial and temporal resolution, the effects of urbanization on precipitation were assessed over the Pearl River Delta(PRD) ...Based on the satellite data from the Climate Prediction Center morphing(CMORPH) at very high spatial and temporal resolution, the effects of urbanization on precipitation were assessed over the Pearl River Delta(PRD) metropolitan regions of China. CMORPH data well estimates the precipitation features over the PRD. Compared to the surrounding rural areas, the PRD urban areas experience fewer and shorter precipitation events with a lower precipitation frequency(ratio of rainy hours, about 3 days per year less); however, short-duration heavy rain events play a more significant role over the PRD urban areas. Afternoon precipitation is much more pronounced over the PRD urban areas than the surrounding rural areas, which is probably because of the increase in short-duration heavy rain over urban areas.展开更多
Climatic change and urbanization effect in China during the last 39 years were investigated. It is found that a warming of about 0.23℃ for the annual temperature has been noticed from 1951 to 1989. The warmings of ab...Climatic change and urbanization effect in China during the last 39 years were investigated. It is found that a warming of about 0.23℃ for the annual temperature has been noticed from 1951 to 1989. The warmings of about 0.78 ℃ in winter and 0.34 3℃ in spring have been shown. It is also presented that a cooling of about -0.27℃ in summer has been indicated. The bigger cities are warmer than smaller cities in China. The dried trends in the annual precipitation during the last 39 years were presented. The precipitation decreased obviously in summer all over China. The bigger cities were drier than smaller cities.展开更多
Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban...Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.展开更多
In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest a...In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.展开更多
Eastern China has experienced rapid urbanization during the past four decades,and it is necessary to understand the impacts of the urbanization on the regional climate.Previous simulations with either regional climate...Eastern China has experienced rapid urbanization during the past four decades,and it is necessary to understand the impacts of the urbanization on the regional climate.Previous simulations with either regional climate models(RCMs)or general circulation models have produced inconsistent and statistically non-significant urbanization effects on precipitation during the East Asian summer monsoon.In the studies with RCMs,reanalysis data were used as the lateral boundary conditions(LBCs)for both urban and non-urban experiments.Since the same LBCs may limit the urbanization effect,in this study,the Weather Research and Forecasting(WRF)model nested within the Global Forecast System(GFS),both of which were coupled with an urban canopy model,were used to explore the urbanization effect over eastern China.The WRF’s LBCs in the runs with/without urbanization were provided by the corresponding GFS runs with/without urbanization.The results showed a significant decrease in precipitation over North China,mainly due to a marked decrease in evaporation and the divergence induced by the reduced latent heating in the mid and upper atmosphere,from the experiment with urbanization.Meanwhile,to the north and south of the large-scale urbanization areas,especially to the south of the Yangtze River,precipitation increased significantly due to largescale urbanization-induced circulation change.With the same LBCs for the WRF runs with/without urbanization,the urbanization effects were limited only to urban and nearby areas;no significant change was found to the south of the Yangtze River,since the same LBCs hampered the effects of urbanization on large-scale circulation.In addition,this study demonstrated that the urban fraction may be a key factor that affects the intensity of the urbanization effect within the urban areas.展开更多
The present study examined the diurnal variations of summer precipitation in the Beijing area by usingsubdaily precipitation and wind observations. A combined effect of topography and urbanization on thecharacteristic...The present study examined the diurnal variations of summer precipitation in the Beijing area by usingsubdaily precipitation and wind observations. A combined effect of topography and urbanization on thecharacteristics of diurnal variations was suggested. It was shown that stations located in the plain areaexhibited typical night rain peaks, whereas those in the mountainous area exhibited clear afternoon peaks ofprecipitation diurnal variations. The precipitation peaks were associated with wind fields around the Beijingarea, which were found to be highly modulated by mountain-valley circulation and urban-country circulation.The lower-tropospheric wind exhibited a clear diurnal shift in its direction from north at 0800 LST to southat 2000 LST, which reflected mountain-valley circulation. The transitions from valley to mountain windand the opposite generally happened after sunset and sunrise, respectively, and both occurred earlier for thestations located closer to mountains. By comparing the diurnal variations of precipitation at stations in anortheast suburb, an urban area, and a southwest suburb, it was revealed that the northeast suburb grouphad the highest normalized rainfall frequency, but the southwest group had the lowest from late afternoon tolate evening. On the contrary, in the early morning from about 0200 to 1000 LST, the southwest group andurban group had the highest normalized rainfall frequency. This pattern might originate from the combinedeffects of mountain-valley topography and urbanization.展开更多
The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich...The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich wetlands in China,was selected as a case study for researching the changes that the urban wetlands have undergone and their impact on the urban thermal environment.Land surface temperature(LST) was acquired from the thermal infrared data of Landsat 5 Thematic Mapper(TM) images in 1990,1995,2000,2006,and 2010,using the single-channel method.The results are as follows:1) considering the changes in land use,the urban wetlands located to the west of Hangzhou have decreased significantly during 1990–2010 because of rapid urbanization.In the Xixi Wetland,the change in land use was relatively small and most of the water body and vegetation were preserved.However,to the east of the Xixi Wetland,large areas of water body and vegetation have been replaced by built-up land as a result of the urbanization process;2) considering the change in LST,it was found from land surface temperature retrieval that the changing spatial pattern of the thermal field was highly correlated with land use changes.Low temperature regions of the eastern Xixi Wetland were gradually eroded by high temperature regions,and the centroid of the heat island in East Xixi was found to be constantly shifting westward.In addition,the difference in LST between the Xixi Wetland and East Xixi has increased;3) considering the impact factors for this area,land use structure and patch shape were found to have a significant impact on LST,shown by the results of multiple linear stepwise regressions.Increasing the size of the wetlands in urban planning is considered to be the most effective measure in alleviating the urban heat island effect.Moreover,reducing the spatial complexity of landscape patches also contributes to the alleviation of the urban heat island effect.展开更多
Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas,known as urban heat island effect.Ther...Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas,known as urban heat island effect.Thermal remote sensors measure the radiation emitted by ground objects,which can be used to estimate the land surface temperature and are beneficial for studying urban heat island effects.The present study investigates the spatial and temporal variations in the effects of urban heat island over Tiruchirappalli city in India during the summer and winter seasons.The study also identifies hot spots and cold spots within the study area.In this study,a significant land surface temperature difference was observed between the urban and rural areas,predominantly at night,indicating the presence of urban heat island at night.These diurnal land surface temperature fluctuations are also detected seasonally,with a relatively higher temperature intensity during the summer.The trend line analysis shows that the mean land surface temperature of the study area is increasing at a rate of 0.166 K/decade with p less than 0.01.By using the spatial autocorrelation method with the urban heat island index as the key parameter,hot spots with a 99 percent confidence level and a 95 percent confidence level were found within the urban area.A hot spot with 95 and 90 percent confidence level was identified outside the urban area.This spike in temperature for a particular region in the rural area is due to industry and the associated built-up area.The study also identified cold spots with a 90 percent confidence level within the rural area.However,cold spots with a 95 and 99 percent confidence level were not identified within the study area.展开更多
With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is un...With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is unclear.In this study,the effects of the urban heat island effect on ozone concentration in Chengdu City,China,were investigated by comparing the ozone concentration under different heat island levels with ozone data from March 2020 to February 2021 and the temperature and wind field data of ERA5-Land during the same period.The results showed that:1)regarding the distribution characteristics,the ozone concentration in Chengdu presented a‘high in summer and low in winter’distribution.The ozone concentration in summer(189.54µg/m^(3))was nearly twice that in winter(91.99µg/m^(3)),and the ozone diurnal variation presented a‘single peak and single valley’distribution,with a peak at 16:00.2)For the characteristics of the heat island effect,the heat island intensity in Chengdu was obviously higher in spring than in other seasons,and the diurnal variation showed a‘single peak and single valley’distribution,with the peak and trough values appearing at 9:00 and 17:00,respectively.Spatially,the eastern part of Chengdu was a heat island,while the western and northwestern parts were mostly cold island.3)The correlation analysis between heat island intensity and ozone concentration showed a significant positive correlation but with a 7–8 h time lag.Ambient air temperature was not the main factor affecting ozone concentration.The heat island effect impacts the ozone concentration in two ways:changing the local heat budget to promote ozone generation and forming local urban wind,which promotes ozone diffusion or accumulation and forms different areas of low and high ozone values.展开更多
Based on the local climate zoning theory and the observation data of hourly temperature of 22 automatic weather stations from 2012 to 2021, K-means clustering algorithm was used to analyze the daily, monthly, seasonal...Based on the local climate zoning theory and the observation data of hourly temperature of 22 automatic weather stations from 2012 to 2021, K-means clustering algorithm was used to analyze the daily, monthly, seasonal, annual and spatial variation characteristics of urban heat island effect in Weihai City in the past 10 years. The results showed that in recent 10 years, the average urban heat island intensity was 1.24 ℃, showing a gradual weakening trend of -0.169 3 ℃/10 a;the summer average heat island intensity was 0.86 ℃, showing a gradual weakening trend of -0.047 5 ℃/10 a. The heat island intensity had obvious diurnal variation characteristics, that is, "it was weak in the day and strong at night". In terms of seasonal variation, heat island effect was the weakest in summer, stronger in spring and autumn, and the strongest in winter. The diurnal, seasonal and annual changes of heat island intensity showed a reverse trend to those of temperature. The high-value area of urban heat island was highly consistent with human residential activity areas and industrial and commercial intensive areas, and the extension trend of heat island intensity was the same as the direction of urban development and construction. The "cold island phenomenon" in some offshore areas was related to the geographical location, terrain and the southeast monsoon trend in summer. The adverse effects of urban heat island effect can be reduced by optimizing the types and distribution of vegetation communities, rationally planning and constructing urban water body, promoting green building materials and adjusting shape design, etc.展开更多
To understand how temperature varies in urban Shanghai under the background of global climate change and how it is affected by urbanization, the Shanghai temperature responses to global warming were analyzed, and then...To understand how temperature varies in urban Shanghai under the background of global climate change and how it is affected by urbanization, the Shanghai temperature responses to global warming were analyzed, and then the temperature trends of urban and suburb stations under different climatic backgrounds were obtained. The urbanization effects on temperature were studied by comparing urban stations to suburb stations, the relationship between urbanization variables and temperature components were obtained, and observation data of surface and high level were combined to assess the contribution of urbanization effect. In the last part of the paper, the cause of urbanization effects on temperature was discussed. The results indicated: The long term change trend of Shanghai annual mean temperature is 1.31/100a from 1873 to 2004, the periods of 1921 – 1948 and 1979 – 2004 are warmer, and the 1979 – 2004 period is the warmest; compared to suburb stations, the representative urban station has slower decreases in the cool period and faster increases in the warm one; the urban and suburb temperatures have distinct differences resulting from urbanization and the differences are increasing by the year, with the difference of mean temperature and minimum temperature being the greatest in fall and that of maximum temperature being the largest in summer between the urban and suburban areas. The urbanization process accelerates the warming speed, with the minimum temperature being the most obvious; the urbanization effect contributes a 0.4°C increase in 1980s and 1.1°C in 1990s to the annual mean temperature.展开更多
[Objective] The aim was to analyse the variation characteristics of temperature in Anqing City and urban heat island effect.[Method] Based on the observation data of temperature from Anqing Station,other surrounding m...[Objective] The aim was to analyse the variation characteristics of temperature in Anqing City and urban heat island effect.[Method] Based on the observation data of temperature from Anqing Station,other surrounding meteorological stations and local automatic meteorological stations in suburbs,the annual variation of temperature and regional consistency was analysed,then the abrupt change of annual average temperature was tested by Mann-Kendall test,finally the influences of urban heat island effect on temperature variation in Anqing Station were studied.[Result] Affected by station migration and urban construction,the annual average temperature increased significantly in Anqing Station from 1977 to 2009,and the rising was more prominent after the middle of the 1990s.Mann-Kendall test showed that the change of temperature in Anqing Station was obviously abrupt around 1993;because of the development of urbanization,average temperature in Anqing Station was 0.8 ℃ higher than that in suburbs,and the minimum temperature rose more remarkably.In addition,urban heat island effect was the strongest in spring,followed by summer and autumn,while it was the weakest in winter.[Conclusion] The effects of urbanization development on the temperature in Anqing City were understood through this research.展开更多
The influence of urban intensity on fog evolution in the Beijing-Tianjin-Hebei (BTH) region (China) is investigated numerically with the the Weather Research and Forecasting (WRF) model coupled with the urban canopy p...The influence of urban intensity on fog evolution in the Beijing-Tianjin-Hebei (BTH) region (China) is investigated numerically with the the Weather Research and Forecasting (WRF) model coupled with the urban canopy parameterization-building energy model (UCP- BEM) urban physics scheme. The experiments were designed with a focus on the influence of different urban intensities, which are represented by a different fractional coverage of natural land, buildings, and energy consumption inside buildings in an urban environment. The results of this study indicate that urban areas notably influence fog evolution when natural land is reduced to a small fraction (e.g., less than 10%). Developed land changes fog evolution through urban effects. Higher urban intensity (HUI) generally results in warmer temperatures and lower wind speeds throughout the day, while inhibiting morning specific humidity loss and afternoon specific humidity gain because of the HUI effect on surface heat flux, surface roughness, and surface moisture flux. HUI leads to later and weaker liquid water content formation, with a higher liquid water content base, primarily due to its effect on near surface temperatures. This finding implies that HUI may inhibit the conditions for fog formation. In addition, urban areas with equal natural and developed land coverage seem to greatly enhance the upward surface moisture flux, which is attributed to the combination of a relatively large potential evaporation on developed land and an ample moisture supply from natural land. As a result, the specific humidity increases in the afternoon.展开更多
This paper analyzes the Urban Heat Island (UHI) effect in Lhasa City of Tibet using meteorological observations, the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST) data obtained fr...This paper analyzes the Urban Heat Island (UHI) effect in Lhasa City of Tibet using meteorological observations, the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST) data obtained from Earth Observing System/Moderate resolution Imaging Spectroradiometer (EOS/MODIS) information, and correlation and composite analyses. The results show: (1) Areas with high temperature are primarily located in the center of the city or nearby counties, while low temperature areas are in the suburbs of counties. The area with high temperature has expanded in recent years and some high-temperature centers have even migrated to certain other regions. (2) The UHI intensity tends to be stronger both in annual and seasonal variations, especially in winter. Also, LST is somewhat positively related to mean air temperature. (3) A negative correlation exists between the changes of LST and NDVI with the increase of vegetation from urban to rural areas in different seasons. (4) The UHI intensity is negatively correlated with precipitation while positively correlated with wind speed, and the relation between the UHI intensity and evaporation varies with the seasons, namely, the intensity is positively correlated with summer evaporation but negatively corre- lated with winter evaporation. (5) UHI intensity might be enhanced by intensified urbanization, wherein built-up areas expand, there is increased heat from human activity, and there is more artificial heat input to the atmosphere.展开更多
Urban areas usually experience higher temperatures compared with their rural surroundings; this is characterized as urban heat islands (UHIs), which are the result of environmental overheating due to anthropic activ...Urban areas usually experience higher temperatures compared with their rural surroundings; this is characterized as urban heat islands (UHIs), which are the result of environmental overheating due to anthropic activities. Urban areas,which are characterised by massive construction that reduce local vegetation coverage, are subject to the absorption of a large amount of solar radiation,which is only partially released into the atmosphere by radiation in the thermal infrared.展开更多
This paper sets out the preliminary results of an experimental research plan aimed at analysing the thermal processes inherent to the urbanisation effect. Although this effect is undeniable, the extent of its impact i...This paper sets out the preliminary results of an experimental research plan aimed at analysing the thermal processes inherent to the urbanisation effect. Although this effect is undeniable, the extent of its impact is a matter of controversy. The results obtained in this study show both the nature of the phenomenon and its considerable magnitude. Failure to take this process into account might seriously bias any analysis of thermal evolution, the cornerstone of the climate change hypothesis.展开更多
[Objective] The study aims at conducting the inversion of urban heat island effect in Xi'an City. [Method] Based on the United States Landsat-7 ETM~ and TM data in different phases, the spatial distribution and chang...[Objective] The study aims at conducting the inversion of urban heat island effect in Xi'an City. [Method] Based on the United States Landsat-7 ETM~ and TM data in different phases, the spatial distribution and changing trends of urban heat island effect in Xi'an City were ana- lyzed, and some corresponding measures to relieve the heat island effect in Xran were put forward according to its spatial distribution and intensity changes. [ Result] Urban heat island effect was very obvious in Xi'an City, that is, surface temperature of urban areas was distinctly higher than that of surrounding suburban areas, and the high-temperature region was akin to an island with a clear boundary. As the enlarging of Xi'an City, the areas subjected to heat island effect expended toward the south and north especially. In addition, heat island effect of Lantian District became more prominent, so it should be paid more attention to. We suggest that some measures like improving urban vegetation coverage, reasonably planing urban buildings, reducing the discharge of man-made heat, preventing and controlling atmospheric pollution should be adopted to control urban heat island effect of Xi'an City effectively. [ Concision] The study could offer theoretical references for the control of urban heat island effect and the im- provement of ecological environment in Xi'an City.展开更多
London’s approaches to tackling climate change after the 21st century are multifaceted and relatively systematic.The aim of this research paper is to analyse London’s actions in response to climate change and to dra...London’s approaches to tackling climate change after the 21st century are multifaceted and relatively systematic.The aim of this research paper is to analyse London’s actions in response to climate change and to draw out what valuable lessons London has for the world in terms of its response to climate change.This paper provides an in-depth analysis of London’s policies and actions on climate mitigation in the areas of“greenhouse gas emissions”and“energy infrastructure”,and climate adaptation actions in the areas of“city green belt and urban afforestation”,“UHI and thermal crisis management”and“water supply infrastructure and sustainable drainage”.It then examines the positive aspects of these actions to determine what London has to say about climate change to the rest of the world and other cities.This paper also discovers that to effectively mitigate and adapt to climate change,London has not only established carbon reduction targets,but also created a large academic research network,represented by the LCCP.At the same time,London has developed a scientific climate change adaptation planning framework(P2R2)that focuses on four key areas:Economic,environmental,health,and infrastructure sectors,and three types of risks:Flooding,heat,and water supply,and emphasizes the dynamics and flexibility of each adaptation strategy.展开更多
The accelerating urbanization process and intensifying climate change have exacerbated the urban heat island effect, threatening sustainable urban development. This study investigates the role of green infrastructure ...The accelerating urbanization process and intensifying climate change have exacerbated the urban heat island effect, threatening sustainable urban development. This study investigates the role of green infrastructure in mitigating urban heat island effects, its implementation challenges, and applications. Employing a system dynamics approach, the research models the relationships between green infrastructure, urban microclimate, and human well-being. Findings indicate that large, continuous green spaces, such as urban parks and green corridors, are most effective, potentially reducing surrounding temperatures by 1˚C - 4˚C. Green infrastructure also provides multiple ecosystem services, including improved air quality and increased biodiversity. However, its implementation faces challenges such as land resource limitations and financial constraints. To address these issues, the study proposes a performance-based planning method, emphasizing multifunctional design and cross-sectoral collaboration. Through analysis of international and Chinese urban case studies, best practices and lessons learned are summarized. The research demonstrates that successful strategies must be context-specific, integrating local conditions while emphasizing long-term planning and continuous optimization. This study provides a scientific basis for developing effective heat island mitigation strategies and climate adaptation plans, ultimately achieving sustainable urban development and improved living environments.展开更多
基金supported by the National Natural Science Foundation of China(41375050)
文摘Based on the satellite data from the Climate Prediction Center morphing(CMORPH) at very high spatial and temporal resolution, the effects of urbanization on precipitation were assessed over the Pearl River Delta(PRD) metropolitan regions of China. CMORPH data well estimates the precipitation features over the PRD. Compared to the surrounding rural areas, the PRD urban areas experience fewer and shorter precipitation events with a lower precipitation frequency(ratio of rainy hours, about 3 days per year less); however, short-duration heavy rain events play a more significant role over the PRD urban areas. Afternoon precipitation is much more pronounced over the PRD urban areas than the surrounding rural areas, which is probably because of the increase in short-duration heavy rain over urban areas.
文摘Climatic change and urbanization effect in China during the last 39 years were investigated. It is found that a warming of about 0.23℃ for the annual temperature has been noticed from 1951 to 1989. The warmings of about 0.78 ℃ in winter and 0.34 3℃ in spring have been shown. It is also presented that a cooling of about -0.27℃ in summer has been indicated. The bigger cities are warmer than smaller cities in China. The dried trends in the annual precipitation during the last 39 years were presented. The precipitation decreased obviously in summer all over China. The bigger cities were drier than smaller cities.
基金the Youth Growth Technology Project,Science and Technology Department of Jilin Province(20230508130RC)Bureau of Forestry and Landscaping of Changchun.
文摘Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.
文摘In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.
基金Supported by the National Key Research and Development Program of China(2018YFC1507801)National Science Foundation of U.S.(AGS-1419526)+2 种基金Beijing Natural Science Foundation(8204061)Beijing–Tianjin–Hebei Collaborative Innovation Community Construction Project(19245419D)State Key Laboratory of Earth Surface Processes and Resource Ecology(2017-KF-05)。
文摘Eastern China has experienced rapid urbanization during the past four decades,and it is necessary to understand the impacts of the urbanization on the regional climate.Previous simulations with either regional climate models(RCMs)or general circulation models have produced inconsistent and statistically non-significant urbanization effects on precipitation during the East Asian summer monsoon.In the studies with RCMs,reanalysis data were used as the lateral boundary conditions(LBCs)for both urban and non-urban experiments.Since the same LBCs may limit the urbanization effect,in this study,the Weather Research and Forecasting(WRF)model nested within the Global Forecast System(GFS),both of which were coupled with an urban canopy model,were used to explore the urbanization effect over eastern China.The WRF’s LBCs in the runs with/without urbanization were provided by the corresponding GFS runs with/without urbanization.The results showed a significant decrease in precipitation over North China,mainly due to a marked decrease in evaporation and the divergence induced by the reduced latent heating in the mid and upper atmosphere,from the experiment with urbanization.Meanwhile,to the north and south of the large-scale urbanization areas,especially to the south of the Yangtze River,precipitation increased significantly due to largescale urbanization-induced circulation change.With the same LBCs for the WRF runs with/without urbanization,the urbanization effects were limited only to urban and nearby areas;no significant change was found to the south of the Yangtze River,since the same LBCs hampered the effects of urbanization on large-scale circulation.In addition,this study demonstrated that the urban fraction may be a key factor that affects the intensity of the urbanization effect within the urban areas.
基金supported by grants from the National Basic Key Research Program (973) under Grant No. 2006CB403606the National Key Technology R&D Program under Grant No. 2007BAC29B04the National Science Foundation Project for Post-doctoral Scientists of China under Grant No. 20080440343
文摘The present study examined the diurnal variations of summer precipitation in the Beijing area by usingsubdaily precipitation and wind observations. A combined effect of topography and urbanization on thecharacteristics of diurnal variations was suggested. It was shown that stations located in the plain areaexhibited typical night rain peaks, whereas those in the mountainous area exhibited clear afternoon peaks ofprecipitation diurnal variations. The precipitation peaks were associated with wind fields around the Beijingarea, which were found to be highly modulated by mountain-valley circulation and urban-country circulation.The lower-tropospheric wind exhibited a clear diurnal shift in its direction from north at 0800 LST to southat 2000 LST, which reflected mountain-valley circulation. The transitions from valley to mountain windand the opposite generally happened after sunset and sunrise, respectively, and both occurred earlier for thestations located closer to mountains. By comparing the diurnal variations of precipitation at stations in anortheast suburb, an urban area, and a southwest suburb, it was revealed that the northeast suburb grouphad the highest normalized rainfall frequency, but the southwest group had the lowest from late afternoon tolate evening. On the contrary, in the early morning from about 0200 to 1000 LST, the southwest group andurban group had the highest normalized rainfall frequency. This pattern might originate from the combinedeffects of mountain-valley topography and urbanization.
基金Under the auspices of National Natural Science Foundation of China(No.41101039,41371068)
文摘The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich wetlands in China,was selected as a case study for researching the changes that the urban wetlands have undergone and their impact on the urban thermal environment.Land surface temperature(LST) was acquired from the thermal infrared data of Landsat 5 Thematic Mapper(TM) images in 1990,1995,2000,2006,and 2010,using the single-channel method.The results are as follows:1) considering the changes in land use,the urban wetlands located to the west of Hangzhou have decreased significantly during 1990–2010 because of rapid urbanization.In the Xixi Wetland,the change in land use was relatively small and most of the water body and vegetation were preserved.However,to the east of the Xixi Wetland,large areas of water body and vegetation have been replaced by built-up land as a result of the urbanization process;2) considering the change in LST,it was found from land surface temperature retrieval that the changing spatial pattern of the thermal field was highly correlated with land use changes.Low temperature regions of the eastern Xixi Wetland were gradually eroded by high temperature regions,and the centroid of the heat island in East Xixi was found to be constantly shifting westward.In addition,the difference in LST between the Xixi Wetland and East Xixi has increased;3) considering the impact factors for this area,land use structure and patch shape were found to have a significant impact on LST,shown by the results of multiple linear stepwise regressions.Increasing the size of the wetlands in urban planning is considered to be the most effective measure in alleviating the urban heat island effect.Moreover,reducing the spatial complexity of landscape patches also contributes to the alleviation of the urban heat island effect.
基金funded this research through grant NITT/R&C/SEED GRANT/2021e22/P.14.
文摘Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas,known as urban heat island effect.Thermal remote sensors measure the radiation emitted by ground objects,which can be used to estimate the land surface temperature and are beneficial for studying urban heat island effects.The present study investigates the spatial and temporal variations in the effects of urban heat island over Tiruchirappalli city in India during the summer and winter seasons.The study also identifies hot spots and cold spots within the study area.In this study,a significant land surface temperature difference was observed between the urban and rural areas,predominantly at night,indicating the presence of urban heat island at night.These diurnal land surface temperature fluctuations are also detected seasonally,with a relatively higher temperature intensity during the summer.The trend line analysis shows that the mean land surface temperature of the study area is increasing at a rate of 0.166 K/decade with p less than 0.01.By using the spatial autocorrelation method with the urban heat island index as the key parameter,hot spots with a 99 percent confidence level and a 95 percent confidence level were found within the urban area.A hot spot with 95 and 90 percent confidence level was identified outside the urban area.This spike in temperature for a particular region in the rural area is due to industry and the associated built-up area.The study also identified cold spots with a 90 percent confidence level within the rural area.However,cold spots with a 95 and 99 percent confidence level were not identified within the study area.
基金Under the auspices of the National Science Foundation of Sichuan Province(No.2022NSFSC1006)Science and Technology Innovation Capability Improvement Plan Project of Chengdu University of Information Technology in 2022(No.KYQN202215)the National Science Foundation of China(No.41505122)。
文摘With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is unclear.In this study,the effects of the urban heat island effect on ozone concentration in Chengdu City,China,were investigated by comparing the ozone concentration under different heat island levels with ozone data from March 2020 to February 2021 and the temperature and wind field data of ERA5-Land during the same period.The results showed that:1)regarding the distribution characteristics,the ozone concentration in Chengdu presented a‘high in summer and low in winter’distribution.The ozone concentration in summer(189.54µg/m^(3))was nearly twice that in winter(91.99µg/m^(3)),and the ozone diurnal variation presented a‘single peak and single valley’distribution,with a peak at 16:00.2)For the characteristics of the heat island effect,the heat island intensity in Chengdu was obviously higher in spring than in other seasons,and the diurnal variation showed a‘single peak and single valley’distribution,with the peak and trough values appearing at 9:00 and 17:00,respectively.Spatially,the eastern part of Chengdu was a heat island,while the western and northwestern parts were mostly cold island.3)The correlation analysis between heat island intensity and ozone concentration showed a significant positive correlation but with a 7–8 h time lag.Ambient air temperature was not the main factor affecting ozone concentration.The heat island effect impacts the ozone concentration in two ways:changing the local heat budget to promote ozone generation and forming local urban wind,which promotes ozone diffusion or accumulation and forms different areas of low and high ozone values.
基金Supported by the Science and Technology Research Project of Shandong Meteorological Bureau(2022SDQN17).
文摘Based on the local climate zoning theory and the observation data of hourly temperature of 22 automatic weather stations from 2012 to 2021, K-means clustering algorithm was used to analyze the daily, monthly, seasonal, annual and spatial variation characteristics of urban heat island effect in Weihai City in the past 10 years. The results showed that in recent 10 years, the average urban heat island intensity was 1.24 ℃, showing a gradual weakening trend of -0.169 3 ℃/10 a;the summer average heat island intensity was 0.86 ℃, showing a gradual weakening trend of -0.047 5 ℃/10 a. The heat island intensity had obvious diurnal variation characteristics, that is, "it was weak in the day and strong at night". In terms of seasonal variation, heat island effect was the weakest in summer, stronger in spring and autumn, and the strongest in winter. The diurnal, seasonal and annual changes of heat island intensity showed a reverse trend to those of temperature. The high-value area of urban heat island was highly consistent with human residential activity areas and industrial and commercial intensive areas, and the extension trend of heat island intensity was the same as the direction of urban development and construction. The "cold island phenomenon" in some offshore areas was related to the geographical location, terrain and the southeast monsoon trend in summer. The adverse effects of urban heat island effect can be reduced by optimizing the types and distribution of vegetation communities, rationally planning and constructing urban water body, promoting green building materials and adjusting shape design, etc.
文摘To understand how temperature varies in urban Shanghai under the background of global climate change and how it is affected by urbanization, the Shanghai temperature responses to global warming were analyzed, and then the temperature trends of urban and suburb stations under different climatic backgrounds were obtained. The urbanization effects on temperature were studied by comparing urban stations to suburb stations, the relationship between urbanization variables and temperature components were obtained, and observation data of surface and high level were combined to assess the contribution of urbanization effect. In the last part of the paper, the cause of urbanization effects on temperature was discussed. The results indicated: The long term change trend of Shanghai annual mean temperature is 1.31/100a from 1873 to 2004, the periods of 1921 – 1948 and 1979 – 2004 are warmer, and the 1979 – 2004 period is the warmest; compared to suburb stations, the representative urban station has slower decreases in the cool period and faster increases in the warm one; the urban and suburb temperatures have distinct differences resulting from urbanization and the differences are increasing by the year, with the difference of mean temperature and minimum temperature being the greatest in fall and that of maximum temperature being the largest in summer between the urban and suburban areas. The urbanization process accelerates the warming speed, with the minimum temperature being the most obvious; the urbanization effect contributes a 0.4°C increase in 1980s and 1.1°C in 1990s to the annual mean temperature.
文摘[Objective] The aim was to analyse the variation characteristics of temperature in Anqing City and urban heat island effect.[Method] Based on the observation data of temperature from Anqing Station,other surrounding meteorological stations and local automatic meteorological stations in suburbs,the annual variation of temperature and regional consistency was analysed,then the abrupt change of annual average temperature was tested by Mann-Kendall test,finally the influences of urban heat island effect on temperature variation in Anqing Station were studied.[Result] Affected by station migration and urban construction,the annual average temperature increased significantly in Anqing Station from 1977 to 2009,and the rising was more prominent after the middle of the 1990s.Mann-Kendall test showed that the change of temperature in Anqing Station was obviously abrupt around 1993;because of the development of urbanization,average temperature in Anqing Station was 0.8 ℃ higher than that in suburbs,and the minimum temperature rose more remarkably.In addition,urban heat island effect was the strongest in spring,followed by summer and autumn,while it was the weakest in winter.[Conclusion] The effects of urbanization development on the temperature in Anqing City were understood through this research.
基金supported by the National Science and Technology Pillar Program of China (Grant No.2008BAC37B01)the National Natural Science Foundation of China (Grant Nos. 40930950 and 40921160379)
文摘The influence of urban intensity on fog evolution in the Beijing-Tianjin-Hebei (BTH) region (China) is investigated numerically with the the Weather Research and Forecasting (WRF) model coupled with the urban canopy parameterization-building energy model (UCP- BEM) urban physics scheme. The experiments were designed with a focus on the influence of different urban intensities, which are represented by a different fractional coverage of natural land, buildings, and energy consumption inside buildings in an urban environment. The results of this study indicate that urban areas notably influence fog evolution when natural land is reduced to a small fraction (e.g., less than 10%). Developed land changes fog evolution through urban effects. Higher urban intensity (HUI) generally results in warmer temperatures and lower wind speeds throughout the day, while inhibiting morning specific humidity loss and afternoon specific humidity gain because of the HUI effect on surface heat flux, surface roughness, and surface moisture flux. HUI leads to later and weaker liquid water content formation, with a higher liquid water content base, primarily due to its effect on near surface temperatures. This finding implies that HUI may inhibit the conditions for fog formation. In addition, urban areas with equal natural and developed land coverage seem to greatly enhance the upward surface moisture flux, which is attributed to the combination of a relatively large potential evaporation on developed land and an ample moisture supply from natural land. As a result, the specific humidity increases in the afternoon.
基金supported by programs of the Institute of Urban Meteorology (No. UMRF200705)the China Meteorological Administration (No. CMATG2010M24)the Institute of Plateau Meteorology (No. BROP200705)
文摘This paper analyzes the Urban Heat Island (UHI) effect in Lhasa City of Tibet using meteorological observations, the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST) data obtained from Earth Observing System/Moderate resolution Imaging Spectroradiometer (EOS/MODIS) information, and correlation and composite analyses. The results show: (1) Areas with high temperature are primarily located in the center of the city or nearby counties, while low temperature areas are in the suburbs of counties. The area with high temperature has expanded in recent years and some high-temperature centers have even migrated to certain other regions. (2) The UHI intensity tends to be stronger both in annual and seasonal variations, especially in winter. Also, LST is somewhat positively related to mean air temperature. (3) A negative correlation exists between the changes of LST and NDVI with the increase of vegetation from urban to rural areas in different seasons. (4) The UHI intensity is negatively correlated with precipitation while positively correlated with wind speed, and the relation between the UHI intensity and evaporation varies with the seasons, namely, the intensity is positively correlated with summer evaporation but negatively corre- lated with winter evaporation. (5) UHI intensity might be enhanced by intensified urbanization, wherein built-up areas expand, there is increased heat from human activity, and there is more artificial heat input to the atmosphere.
基金funded by Grand Challenge-SUS(Sustainability Science)Grants GC002C-15SUS and GC002A-15SUS
文摘Urban areas usually experience higher temperatures compared with their rural surroundings; this is characterized as urban heat islands (UHIs), which are the result of environmental overheating due to anthropic activities. Urban areas,which are characterised by massive construction that reduce local vegetation coverage, are subject to the absorption of a large amount of solar radiation,which is only partially released into the atmosphere by radiation in the thermal infrared.
文摘This paper sets out the preliminary results of an experimental research plan aimed at analysing the thermal processes inherent to the urbanisation effect. Although this effect is undeniable, the extent of its impact is a matter of controversy. The results obtained in this study show both the nature of the phenomenon and its considerable magnitude. Failure to take this process into account might seriously bias any analysis of thermal evolution, the cornerstone of the climate change hypothesis.
文摘[Objective] The study aims at conducting the inversion of urban heat island effect in Xi'an City. [Method] Based on the United States Landsat-7 ETM~ and TM data in different phases, the spatial distribution and changing trends of urban heat island effect in Xi'an City were ana- lyzed, and some corresponding measures to relieve the heat island effect in Xran were put forward according to its spatial distribution and intensity changes. [ Result] Urban heat island effect was very obvious in Xi'an City, that is, surface temperature of urban areas was distinctly higher than that of surrounding suburban areas, and the high-temperature region was akin to an island with a clear boundary. As the enlarging of Xi'an City, the areas subjected to heat island effect expended toward the south and north especially. In addition, heat island effect of Lantian District became more prominent, so it should be paid more attention to. We suggest that some measures like improving urban vegetation coverage, reasonably planing urban buildings, reducing the discharge of man-made heat, preventing and controlling atmospheric pollution should be adopted to control urban heat island effect of Xi'an City effectively. [ Concision] The study could offer theoretical references for the control of urban heat island effect and the im- provement of ecological environment in Xi'an City.
文摘London’s approaches to tackling climate change after the 21st century are multifaceted and relatively systematic.The aim of this research paper is to analyse London’s actions in response to climate change and to draw out what valuable lessons London has for the world in terms of its response to climate change.This paper provides an in-depth analysis of London’s policies and actions on climate mitigation in the areas of“greenhouse gas emissions”and“energy infrastructure”,and climate adaptation actions in the areas of“city green belt and urban afforestation”,“UHI and thermal crisis management”and“water supply infrastructure and sustainable drainage”.It then examines the positive aspects of these actions to determine what London has to say about climate change to the rest of the world and other cities.This paper also discovers that to effectively mitigate and adapt to climate change,London has not only established carbon reduction targets,but also created a large academic research network,represented by the LCCP.At the same time,London has developed a scientific climate change adaptation planning framework(P2R2)that focuses on four key areas:Economic,environmental,health,and infrastructure sectors,and three types of risks:Flooding,heat,and water supply,and emphasizes the dynamics and flexibility of each adaptation strategy.
文摘The accelerating urbanization process and intensifying climate change have exacerbated the urban heat island effect, threatening sustainable urban development. This study investigates the role of green infrastructure in mitigating urban heat island effects, its implementation challenges, and applications. Employing a system dynamics approach, the research models the relationships between green infrastructure, urban microclimate, and human well-being. Findings indicate that large, continuous green spaces, such as urban parks and green corridors, are most effective, potentially reducing surrounding temperatures by 1˚C - 4˚C. Green infrastructure also provides multiple ecosystem services, including improved air quality and increased biodiversity. However, its implementation faces challenges such as land resource limitations and financial constraints. To address these issues, the study proposes a performance-based planning method, emphasizing multifunctional design and cross-sectoral collaboration. Through analysis of international and Chinese urban case studies, best practices and lessons learned are summarized. The research demonstrates that successful strategies must be context-specific, integrating local conditions while emphasizing long-term planning and continuous optimization. This study provides a scientific basis for developing effective heat island mitigation strategies and climate adaptation plans, ultimately achieving sustainable urban development and improved living environments.