The preparation of new types of poly(imide-urea)s (PIUs) with high thermal stability and improved solubility was investigated. Three series of aromatic poly(imide-urea)s (PIUOa-c, PIUSa-c, and PIUNa-c) bearing pendent...The preparation of new types of poly(imide-urea)s (PIUs) with high thermal stability and improved solubility was investigated. Three series of aromatic poly(imide-urea)s (PIUOa-c, PIUSa-c, and PIUNa-c) bearing pendent benzoxazole, benzothiazole or benzimidazole rings were prepared by one-pot polycondensation reaction of three bis(imide-carboxylic acid)s, 2-[3,5-bis(N-trimellitimidoyl)-phenyl]benzoxazole (1O), 2-[3,5-bis(N- trimellitimidoyl)-phenyl]benzothiazole (1S), or 2-[3,5-bis(N-trimellitimidoyl)-phenyl]benzimidazole (1N) with various kinds of aromatic diamines (a-c). The effects of the benzazole pendent groups on the polymer properties such as solubility and thermal stability were investigated by comparison of the polymers. All of the resulting polymers exhibited excellent solubility in common polar solvents. The glass transition temperature of the polymers determined by DSC thermograms were in the range 192℃ - 236℃. The temperatures at 10% weight loss from their TGA curves were found to be in the range 390℃ - 441℃ in nitrogen.展开更多
文摘The preparation of new types of poly(imide-urea)s (PIUs) with high thermal stability and improved solubility was investigated. Three series of aromatic poly(imide-urea)s (PIUOa-c, PIUSa-c, and PIUNa-c) bearing pendent benzoxazole, benzothiazole or benzimidazole rings were prepared by one-pot polycondensation reaction of three bis(imide-carboxylic acid)s, 2-[3,5-bis(N-trimellitimidoyl)-phenyl]benzoxazole (1O), 2-[3,5-bis(N- trimellitimidoyl)-phenyl]benzothiazole (1S), or 2-[3,5-bis(N-trimellitimidoyl)-phenyl]benzimidazole (1N) with various kinds of aromatic diamines (a-c). The effects of the benzazole pendent groups on the polymer properties such as solubility and thermal stability were investigated by comparison of the polymers. All of the resulting polymers exhibited excellent solubility in common polar solvents. The glass transition temperature of the polymers determined by DSC thermograms were in the range 192℃ - 236℃. The temperatures at 10% weight loss from their TGA curves were found to be in the range 390℃ - 441℃ in nitrogen.