The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age ...The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age mechanics models of rock behaviour and some least squares calibration techniques. The main aim is to examine the capability of continuous mechanics models to predict brittle damage behaviour of gran- ite rocks. The performed simulations use an in-house finite element software GEM and self-developed experimental continuum damage MATLAB code. The main contributions are twofold. First, it is an inverse analysis, which is used for (1) verification of an initial stress measurement by back analysis of conver- gence measurement during construction of the access tunnel and (2) identification of heat transfer rock mass properties by an inverse method based on the known heat sources and temperature measurements. Second, three different hierarchically built models are used to estimate the pillar damage zones, i.e. elas- tic model with Drucker-Prager strength criterion, elasto-plastic model with the same yield limit and a combination of elasto-plasticity with continuum damage mechanics. The damage mechanics model is also used to simulate uniaxial and triaxial compressive strength tests on the ,Aspo granite.展开更多
Based on the uniaxial compression creep experiments conducted on bauxite sandstone obtained from Sanmenxia,typical creep experiment curves were obtained.From the characteristics of strain component of creep curves,the...Based on the uniaxial compression creep experiments conducted on bauxite sandstone obtained from Sanmenxia,typical creep experiment curves were obtained.From the characteristics of strain component of creep curves,the creep strain is composed of instantaneous elastic strain,ε(me),instantaneous plastic strain,ε(mp),viscoelastic strain,ε(ce),and viscoplastic strain,ε(cp).Based on the characteristics of instantaneous plastic strain,a new element of instantaneous plastic rheology was introduced,instantaneous plastic modulus was defined,and the modified Burgers model was established.Then identification of direct screening method in this model was completed.According to the mechanical properties of rheological elements,one- and three-dimensional creep equations in different stress levels were obtained.One-dimensional model parameters were identified by the method of least squares,and in the process of computation,Gauss-Newton iteration method was applied.Finally,by fitting the experimental curves,the correctness of direct method model was verified,then the examination of posterior exclusive method of the model was accomplished.The results showed that in the improved Burgers models,the rheological characteristics of sandstone are embodied properly,microscopic analysis of creep curves is also achieved,and the correctness of comprehensive identification method of rheological model is verified.展开更多
Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform d...Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.展开更多
The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality es...The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.展开更多
Asphalt pavement rtting is a major safety concem and is one of the main distress modes of asphalt pavement.Research into asphalt pavement mixes that provide strong resistance for nutting is considered of great signifi...Asphalt pavement rtting is a major safety concem and is one of the main distress modes of asphalt pavement.Research into asphalt pavement mixes that provide strong resistance for nutting is considered of great significance as it can help provide extended pavement life and significant cost savings in pavement maintenance and rehabilitation.The objectives of this study are to develop numernical models to investigate the ntting of asphalt concrete pavements and to find optimal design of asphalt pave-ment mix for nutting resistance.Three-dimensional Finite Element mod-els were first developed to simulate both the axial compression and wheel track testing in which a visco elastic-plastic material model was used to predict the ntting of the asphalt concrete pavements.A strain hardening creep model with the material parameters developed from experimental testing was employed to model the time-dependent characteristics of the asphalt concrete pavements.The results were validated against the pre-vious experimental wheel track test results of different pavement mixes.Finally,optimisation techniques using the Design Of Experiments method were applied to the simulation rutting results by varying creep parameters to identify their effects on rutting resistance in order to obtain an optimal asphalt pavements mixes.The results of this paper clearly demonstrate an efficient and effective experimental-numerical method and tool set towards optimal design for asphalt concrete pavements for rutting resis-tance.展开更多
The bonded-particle model(BPM)is commonly used in the numerical analysis of ore samples.To improve the accuracy of simulating the mechanical process of ore process of ore crushing in a crusher,the parameters of the BP...The bonded-particle model(BPM)is commonly used in the numerical analysis of ore samples.To improve the accuracy of simulating the mechanical process of ore process of ore crushing in a crusher,the parameters of the BPM for the ore must be calibrated.In this study,a calibration method was proposed for the scientific determination of the parameters of the BPM for ore undergoing uniaxial compression.First,physical tests and simulations were conducted to determine the mechanical response(uniaxial compressive strength and macroscopic stiffness)of ore during uniaxial compression.Then,the sensitivity of the mechanical response to the values of microscopic parameters was tested using a Plackett-Burman design.Next,the microscopic parameters with the greatest impact on the response were identified,and the range of parameters that met the target response was determined using a steepest ascent design;Second,a second-order model of the mechanical response was established using the sensitive parameters by combining a Box-Behnken design with response surface methodology to obtain the optimal BPM parameters.Simulation tests showed that the normal stiffness per unit area,critical shear stress,and bonded disk radius had significant effects on the uniaxial compressive strength(UCS)and macroscopic stiffness(MS).To verify the validity of the proposed calibration method,laboratory tests were conducted.The consistency of the simulation results with experimental results indicated that response surface methodology with the Plackett-Burman design,steepest ascent design,and Box-Behnken design can be an effective method for calibrating the BPM of ores.展开更多
In order to study the dynamic response of the rail embankment under different speeds and moving load of following vehicles,a model experiment with a ratio of 1:10 is established to test the time history of acceleratio...In order to study the dynamic response of the rail embankment under different speeds and moving load of following vehicles,a model experiment with a ratio of 1:10 is established to test the time history of acceleration and the earth pressure of the embankment at various train speeds.Using the ABAQUS finite element calculation software,a train load is applied through the FORTRAN subroutine,thereby establishing a three-dimensional finite element model with the same size as the model experiment.The data and conclusions of the finite element method model are verified by the model experiment.The model also makes some supplements to the model experiment.The experimental results show that with the increase of speed,the peak acceleration and earth pressure of the embankment also increase.By analyzing the experimental data,it can also be found that the vertical acceleration of the embankment is much greater than the axial acceleration and the lateral acceleration.In addition,the elastic modulus of the soil and the sleeper pitch also have some influence on the acceleration.展开更多
Discrete element modelling is commonly used for particle-scale modelling of granular or particulate materials. Developing a DEM model requires the determination of a number of micro-structural parameters, including th...Discrete element modelling is commonly used for particle-scale modelling of granular or particulate materials. Developing a DEM model requires the determination of a number of micro-structural parameters, including the particle contact stiffness and the particle-particle friction. These parameters cannot easily be measured in the laboratory or directly related to measurable, physical material parameters. Therefore, a calibration process is typically used to determine the values for use in simulations of physical systems. This paper focuses on how to define the particle stiffness for the discrete element modelling in order to perform realistic simulations of granular materials in the case of linear contact model. For that, laboratory tests and numerical discrete element modelling of triaxial compression tests have been carried out on two different non-cohesive soils i.e. poorly graded fine sand and gap graded coarse sand. The results of experimental tests are used to calibrate the numerical model. It is found that the numerical results are qualitatively and quantitatively in good agreement with the laboratory tests results. Moreover, the results show that the stress dependent of soil behaviour can be reproduced well by assigning the particle stiffness as a function of the particle size particularly for gap graded soil.展开更多
基金the context of the international DECOVALEX Project (DEmonstration of COupled models and their VALidation against EXperiments)financed by Radioactive Waste Repository Authority (RAWRA),through Technical University of Liberec (TUL), Czech RepublicSKB through its sp Pillar Stability Experiment project
文摘The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age mechanics models of rock behaviour and some least squares calibration techniques. The main aim is to examine the capability of continuous mechanics models to predict brittle damage behaviour of gran- ite rocks. The performed simulations use an in-house finite element software GEM and self-developed experimental continuum damage MATLAB code. The main contributions are twofold. First, it is an inverse analysis, which is used for (1) verification of an initial stress measurement by back analysis of conver- gence measurement during construction of the access tunnel and (2) identification of heat transfer rock mass properties by an inverse method based on the known heat sources and temperature measurements. Second, three different hierarchically built models are used to estimate the pillar damage zones, i.e. elas- tic model with Drucker-Prager strength criterion, elasto-plastic model with the same yield limit and a combination of elasto-plasticity with continuum damage mechanics. The damage mechanics model is also used to simulate uniaxial and triaxial compressive strength tests on the ,Aspo granite.
基金Projects (51174228,51274249) supported by the National Natural Science Foundation of China
文摘Based on the uniaxial compression creep experiments conducted on bauxite sandstone obtained from Sanmenxia,typical creep experiment curves were obtained.From the characteristics of strain component of creep curves,the creep strain is composed of instantaneous elastic strain,ε(me),instantaneous plastic strain,ε(mp),viscoelastic strain,ε(ce),and viscoplastic strain,ε(cp).Based on the characteristics of instantaneous plastic strain,a new element of instantaneous plastic rheology was introduced,instantaneous plastic modulus was defined,and the modified Burgers model was established.Then identification of direct screening method in this model was completed.According to the mechanical properties of rheological elements,one- and three-dimensional creep equations in different stress levels were obtained.One-dimensional model parameters were identified by the method of least squares,and in the process of computation,Gauss-Newton iteration method was applied.Finally,by fitting the experimental curves,the correctness of direct method model was verified,then the examination of posterior exclusive method of the model was accomplished.The results showed that in the improved Burgers models,the rheological characteristics of sandstone are embodied properly,microscopic analysis of creep curves is also achieved,and the correctness of comprehensive identification method of rheological model is verified.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205004,51475003)Beijing Municipal Natural Science Foundation of China(Grant No.3152010)Beijing Municipal Education Committee Science and Technology Program,China(Grant No.KM201510009004)
文摘Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.
文摘The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.
基金This study is part of the FIRST project‘The development of numerical simulation and optimization technologies for optimal performance of concrete asphalt pavements taking into account the traffic and climate conditions of Vietnam’(35/FIRST/1a/UTC).We acknowledge FIRST Project,Ministry of Science and Technology,Vietnam,for sponsoring this project。
文摘Asphalt pavement rtting is a major safety concem and is one of the main distress modes of asphalt pavement.Research into asphalt pavement mixes that provide strong resistance for nutting is considered of great significance as it can help provide extended pavement life and significant cost savings in pavement maintenance and rehabilitation.The objectives of this study are to develop numernical models to investigate the ntting of asphalt concrete pavements and to find optimal design of asphalt pave-ment mix for nutting resistance.Three-dimensional Finite Element mod-els were first developed to simulate both the axial compression and wheel track testing in which a visco elastic-plastic material model was used to predict the ntting of the asphalt concrete pavements.A strain hardening creep model with the material parameters developed from experimental testing was employed to model the time-dependent characteristics of the asphalt concrete pavements.The results were validated against the pre-vious experimental wheel track test results of different pavement mixes.Finally,optimisation techniques using the Design Of Experiments method were applied to the simulation rutting results by varying creep parameters to identify their effects on rutting resistance in order to obtain an optimal asphalt pavements mixes.The results of this paper clearly demonstrate an efficient and effective experimental-numerical method and tool set towards optimal design for asphalt concrete pavements for rutting resis-tance.
文摘The bonded-particle model(BPM)is commonly used in the numerical analysis of ore samples.To improve the accuracy of simulating the mechanical process of ore process of ore crushing in a crusher,the parameters of the BPM for the ore must be calibrated.In this study,a calibration method was proposed for the scientific determination of the parameters of the BPM for ore undergoing uniaxial compression.First,physical tests and simulations were conducted to determine the mechanical response(uniaxial compressive strength and macroscopic stiffness)of ore during uniaxial compression.Then,the sensitivity of the mechanical response to the values of microscopic parameters was tested using a Plackett-Burman design.Next,the microscopic parameters with the greatest impact on the response were identified,and the range of parameters that met the target response was determined using a steepest ascent design;Second,a second-order model of the mechanical response was established using the sensitive parameters by combining a Box-Behnken design with response surface methodology to obtain the optimal BPM parameters.Simulation tests showed that the normal stiffness per unit area,critical shear stress,and bonded disk radius had significant effects on the uniaxial compressive strength(UCS)and macroscopic stiffness(MS).To verify the validity of the proposed calibration method,laboratory tests were conducted.The consistency of the simulation results with experimental results indicated that response surface methodology with the Plackett-Burman design,steepest ascent design,and Box-Behnken design can be an effective method for calibrating the BPM of ores.
基金Project(2018YFE0207100)supported by the National Key R&D Program of ChinaProject(52078426)supported by the National Natural Science Fundation of China+4 种基金Projects(2020YJ0253,2020YFSY0060,2019JDRC0133,2019JDRC0134)supported by the Sichuan Provincial Science and Technology Support Project,ChinaProject(K2019G009)supported by the Science and Technology Research and Development Plan of China National Railway Corporation LimitedProjects(SY2016G003,N2020T004)supported by the China National Railway Group Co.Ltd.Scientific Research ProjectProject(LNTCCMA-20210109)supported by the Key Laboratory of New Technology for Construction of Cities in Mountain Area,ChinaProject(2021M692689)supported by the China Postdoctoral Science Foundation。
文摘In order to study the dynamic response of the rail embankment under different speeds and moving load of following vehicles,a model experiment with a ratio of 1:10 is established to test the time history of acceleration and the earth pressure of the embankment at various train speeds.Using the ABAQUS finite element calculation software,a train load is applied through the FORTRAN subroutine,thereby establishing a three-dimensional finite element model with the same size as the model experiment.The data and conclusions of the finite element method model are verified by the model experiment.The model also makes some supplements to the model experiment.The experimental results show that with the increase of speed,the peak acceleration and earth pressure of the embankment also increase.By analyzing the experimental data,it can also be found that the vertical acceleration of the embankment is much greater than the axial acceleration and the lateral acceleration.In addition,the elastic modulus of the soil and the sleeper pitch also have some influence on the acceleration.
文摘Discrete element modelling is commonly used for particle-scale modelling of granular or particulate materials. Developing a DEM model requires the determination of a number of micro-structural parameters, including the particle contact stiffness and the particle-particle friction. These parameters cannot easily be measured in the laboratory or directly related to measurable, physical material parameters. Therefore, a calibration process is typically used to determine the values for use in simulations of physical systems. This paper focuses on how to define the particle stiffness for the discrete element modelling in order to perform realistic simulations of granular materials in the case of linear contact model. For that, laboratory tests and numerical discrete element modelling of triaxial compression tests have been carried out on two different non-cohesive soils i.e. poorly graded fine sand and gap graded coarse sand. The results of experimental tests are used to calibrate the numerical model. It is found that the numerical results are qualitatively and quantitatively in good agreement with the laboratory tests results. Moreover, the results show that the stress dependent of soil behaviour can be reproduced well by assigning the particle stiffness as a function of the particle size particularly for gap graded soil.