In this paper, a concept for the joint modeling of the device load and user intention is presented. It consists of two coupled models, a device load model to characterize the power consumption of an electric device of...In this paper, a concept for the joint modeling of the device load and user intention is presented. It consists of two coupled models, a device load model to characterize the power consumption of an electric device of interest, and a user intention model for describing the user intentions which cause the energy consumption. The advantage of this joint model is the ability to predict the device load from the user intention and to reconstruct the user intention from the measured device load. This opens a new way for load monitoring, simulation and prediction from the perspective of users instead of devices.展开更多
The user’s intent to seek online information has been an active area of research in user profiling.User profiling considers user characteristics,behaviors,activities,and preferences to sketch user intentions,interest...The user’s intent to seek online information has been an active area of research in user profiling.User profiling considers user characteristics,behaviors,activities,and preferences to sketch user intentions,interests,and motivations.Determining user characteristics can help capture implicit and explicit preferences and intentions for effective user-centric and customized content presentation.The user’s complete online experience in seeking information is a blend of activities such as searching,verifying,and sharing it on social platforms.However,a combination of multiple behaviors in profiling users has yet to be considered.This research takes a novel approach and explores user intent types based on multidimensional online behavior in information acquisition.This research explores information search,verification,and dissemination behavior and identifies diverse types of users based on their online engagement using machine learning.The research proposes a generic user profile template that explains the user characteristics based on the internet experience and uses it as ground truth for data annotation.User feedback is based on online behavior and practices collected by using a survey method.The participants include both males and females from different occupation sectors and different ages.The data collected is subject to feature engineering,and the significant features are presented to unsupervised machine learning methods to identify user intent classes or profiles and their characteristics.Different techniques are evaluated,and the K-Mean clustering method successfully generates five user groups observing different user characteristics with an average silhouette of 0.36 and a distortion score of 1136.Feature average is computed to identify user intent type characteristics.The user intent classes are then further generalized to create a user intent template with an Inter-Rater Reliability of 75%.This research successfully extracts different user types based on their preferences in online content,platforms,criteria,and frequency.The study also validates the proposed template on user feedback data through Inter-Rater Agreement process using an external human rater.展开更多
With the development of Internet technology and the enhancement of people’s concept of the rule of law,online legal consultation has become an important means for the general public to conduct legal consultation.Howe...With the development of Internet technology and the enhancement of people’s concept of the rule of law,online legal consultation has become an important means for the general public to conduct legal consultation.However,different people have different language expressions and legal professional backgrounds.This phenomenon may lead to the phenomenon of different descriptions of the same legal consultation.How to accurately understand the true intentions behind different users’legal consulting statements is an important issue that needs to be solved urgently in the field of legal consulting services.Traditional intent understanding algorithms rely heavily on the lexical and semantic information between the original data,and are not scalable,and often require taxing manual annotation work.This article proposes a new approach TdBrnn which is based on the normalized tensor decomposition method and Bi-LSTM to learn users’intention to legal consulting.First,we present the users’legal consulting statements as a tensor.And then we use the normalized tensor decomposition layer proposed by this article to extract the tensor elements and structural information of the original tensor which can best represent users’intention of legal consultation,namely the core tensor.The core tensor relies less on the lexical and semantic information of the original users’legal consulting statements data,it reduces the dimension of the original tensor,and greatly reduces the computational complexity of the subsequent Bi-LSTM algorithm.Furthermore,we use a large number of core tensors obtained by the tensor decomposition layer with users’legal consulting statements tensors as inputs to continuously train Bi-LSTM,and finally derive the users’legal consultation intention classification model which can comprehensively understand the user’s legal consultation intention.Experiments show that our method has faster convergence speed and higher accuracy than traditional recurrent neural networks.展开更多
In the recent Smart Home(SH)research work,intelligent service recommendation technique based on behavior recognition,it has been extensively preferred by researchers.However,most current research uses the Semantic rec...In the recent Smart Home(SH)research work,intelligent service recommendation technique based on behavior recognition,it has been extensively preferred by researchers.However,most current research uses the Semantic recognition to construct the user’s basic behavior model.This method is usually restricted by environmental factors,the way these models are built makes it impossible for them to dynamically match the services that might be provided in the user environment.To solve this problem,this paper proposes a Semantic behavior assistance(Semantic behavior assistance,SBA).By joining the semantic model on the intelligent gateway,building an SA model,in this way,a logical Internet networks for smart home is established.At the same time,a behavior assistant method based on SBA model is proposed,among them,the user environment-related entities,sensors,devices,and user-related knowledge models exist in the logical interconnection network of the SH system through the semantic model.In this paper,the data simulation experiment is carried out on the method.The experimental results show that the SBA model is better than the knowledge-based pre-defined model.展开更多
Most of the questions from users lack the context needed to thoroughly understand the problemat hand,thus making the questions impossible to answer.Semantic Similarity Estimation is based on relating user’s questions...Most of the questions from users lack the context needed to thoroughly understand the problemat hand,thus making the questions impossible to answer.Semantic Similarity Estimation is based on relating user’s questions to the context from previous Conversational Search Systems(CSS)to provide answers without requesting the user’s context.It imposes constraints on the time needed to produce an answer for the user.The proposed model enables the use of contextual data associated with previous Conversational Searches(CS).While receiving a question in a new conversational search,the model determines the question that refers tomore pastCS.Themodel then infers past contextual data related to the given question and predicts an answer based on the context inferred without engaging in multi-turn interactions or requesting additional data from the user for context.This model shows the ability to use the limited information in user queries for best context inferences based on Closed-Domain-based CS and Bidirectional Encoder Representations from Transformers for textual representations.展开更多
Security experts have not formally defined the distinction between viruses and normal programs. The paper takes user's intension as the criteria for malice, gives a formal definition of viruses that aim at stealing o...Security experts have not formally defined the distinction between viruses and normal programs. The paper takes user's intension as the criteria for malice, gives a formal definition of viruses that aim at stealing or destroying files, and proposes an algorithm to detect virus correctly. Compared with traditional definitions, this new definition is easy to understand, covers more malwares, adapts development of virus technology, and defines virus on the spot. The paper has also analyzed more than 250 real viruses and finds that they are all in the domain of the new definition, this implies that the new definition has great practical significance.展开更多
Recent progress of Web 2.0 applications has witnessed the rapid development of microblog in China, which has already been one of the most important ways for online communications, especially on sharing information. Th...Recent progress of Web 2.0 applications has witnessed the rapid development of microblog in China, which has already been one of the most important ways for online communications, especially on sharing information. This paper tries to make an in-depth investigation on the big data modeling and analysis of microblog ecosystem in China by using a real dataset containing over17 million records of SinaWeibo users. First, we present the detailed geography, gender, authentication, education and age analysis of microblog users in this dataset. Then we conduct the numerical features distribution analysis, propose the user influence formula and calculate the influences for different kinds of microblog users. Finally, user content intention analysis is performed to reveal users most concerns in their daily life.展开更多
We analyze the attack steps of malware and focus on the malware loading. Our assumption is that a malware contains no less than one module, so monitoring module loading is indispensable to defeat malware. Moreover, we...We analyze the attack steps of malware and focus on the malware loading. Our assumption is that a malware contains no less than one module, so monitoring module loading is indispensable to defeat malware. Moreover, we design security policies and employ these policies when a module is loaded by the operating system. These policies depend on properties of module, the connection to created modules, and the link to user intention. The properties of module and this connection can improve the accuracy of malware detection. User intention can be helpful to handle unknown module and enhances the flexibility of policy. Finally, ModuleGuard, a gatekeeper for dynamic module loading against malware, has been designed and implemented, which integrates these security policies. Our experimental results have shown the feasibility and effectiveness of our method.展开更多
The human-computer dialogue has recently attracted extensive attention from both academia and industry as an important branch in the field of artificial intelligence(AI).However,there are few studies on the evaluation...The human-computer dialogue has recently attracted extensive attention from both academia and industry as an important branch in the field of artificial intelligence(AI).However,there are few studies on the evaluation of large-scale Chinese human-computer dialogue systems.In this paper,we introduce the Second Evaluation of Chinese Human-Computer Dialogue Technology,which focuses on the identification of a user’s intents and intelligent processing of intent words.The Evaluation consists of user intent classification(Task 1)and online testing of task-oriented dialogues(Task 2),the data sets of which are provided by iFLYTEK Corporation.The evaluation tasks and data sets are introduced in detail,and meanwhile,the evaluation results and the existing problems in the evaluation are discussed.展开更多
文摘In this paper, a concept for the joint modeling of the device load and user intention is presented. It consists of two coupled models, a device load model to characterize the power consumption of an electric device of interest, and a user intention model for describing the user intentions which cause the energy consumption. The advantage of this joint model is the ability to predict the device load from the user intention and to reconstruct the user intention from the measured device load. This opens a new way for load monitoring, simulation and prediction from the perspective of users instead of devices.
文摘The user’s intent to seek online information has been an active area of research in user profiling.User profiling considers user characteristics,behaviors,activities,and preferences to sketch user intentions,interests,and motivations.Determining user characteristics can help capture implicit and explicit preferences and intentions for effective user-centric and customized content presentation.The user’s complete online experience in seeking information is a blend of activities such as searching,verifying,and sharing it on social platforms.However,a combination of multiple behaviors in profiling users has yet to be considered.This research takes a novel approach and explores user intent types based on multidimensional online behavior in information acquisition.This research explores information search,verification,and dissemination behavior and identifies diverse types of users based on their online engagement using machine learning.The research proposes a generic user profile template that explains the user characteristics based on the internet experience and uses it as ground truth for data annotation.User feedback is based on online behavior and practices collected by using a survey method.The participants include both males and females from different occupation sectors and different ages.The data collected is subject to feature engineering,and the significant features are presented to unsupervised machine learning methods to identify user intent classes or profiles and their characteristics.Different techniques are evaluated,and the K-Mean clustering method successfully generates five user groups observing different user characteristics with an average silhouette of 0.36 and a distortion score of 1136.Feature average is computed to identify user intent type characteristics.The user intent classes are then further generalized to create a user intent template with an Inter-Rater Reliability of 75%.This research successfully extracts different user types based on their preferences in online content,platforms,criteria,and frequency.The study also validates the proposed template on user feedback data through Inter-Rater Agreement process using an external human rater.
基金This work is supported by the National Key Research and Development Program of China(2018YFC0830602,2016QY03D0501)National Natural Science Foundation of China(61872111).
文摘With the development of Internet technology and the enhancement of people’s concept of the rule of law,online legal consultation has become an important means for the general public to conduct legal consultation.However,different people have different language expressions and legal professional backgrounds.This phenomenon may lead to the phenomenon of different descriptions of the same legal consultation.How to accurately understand the true intentions behind different users’legal consulting statements is an important issue that needs to be solved urgently in the field of legal consulting services.Traditional intent understanding algorithms rely heavily on the lexical and semantic information between the original data,and are not scalable,and often require taxing manual annotation work.This article proposes a new approach TdBrnn which is based on the normalized tensor decomposition method and Bi-LSTM to learn users’intention to legal consulting.First,we present the users’legal consulting statements as a tensor.And then we use the normalized tensor decomposition layer proposed by this article to extract the tensor elements and structural information of the original tensor which can best represent users’intention of legal consultation,namely the core tensor.The core tensor relies less on the lexical and semantic information of the original users’legal consulting statements data,it reduces the dimension of the original tensor,and greatly reduces the computational complexity of the subsequent Bi-LSTM algorithm.Furthermore,we use a large number of core tensors obtained by the tensor decomposition layer with users’legal consulting statements tensors as inputs to continuously train Bi-LSTM,and finally derive the users’legal consultation intention classification model which can comprehensively understand the user’s legal consultation intention.Experiments show that our method has faster convergence speed and higher accuracy than traditional recurrent neural networks.
基金supported by the National Natural Science Foundation of China(61772196,61472136)the Hunan Provincial Focus Social Science Fund(2016ZDB006)+2 种基金Hunan Provincial Social Science Achievement Review Committee results in appraisal identification project(Xiang social assessment 2016JD05)Key Project of Hunan Provincial Social Science Achievement Review Committee(XSP 19ZD1005)financial support provided by the Key Laboratory of Hunan Province for New Retail Virtual Reality Technology(2017TP1026)。
文摘In the recent Smart Home(SH)research work,intelligent service recommendation technique based on behavior recognition,it has been extensively preferred by researchers.However,most current research uses the Semantic recognition to construct the user’s basic behavior model.This method is usually restricted by environmental factors,the way these models are built makes it impossible for them to dynamically match the services that might be provided in the user environment.To solve this problem,this paper proposes a Semantic behavior assistance(Semantic behavior assistance,SBA).By joining the semantic model on the intelligent gateway,building an SA model,in this way,a logical Internet networks for smart home is established.At the same time,a behavior assistant method based on SBA model is proposed,among them,the user environment-related entities,sensors,devices,and user-related knowledge models exist in the logical interconnection network of the SH system through the semantic model.In this paper,the data simulation experiment is carried out on the method.The experimental results show that the SBA model is better than the knowledge-based pre-defined model.
文摘Most of the questions from users lack the context needed to thoroughly understand the problemat hand,thus making the questions impossible to answer.Semantic Similarity Estimation is based on relating user’s questions to the context from previous Conversational Search Systems(CSS)to provide answers without requesting the user’s context.It imposes constraints on the time needed to produce an answer for the user.The proposed model enables the use of contextual data associated with previous Conversational Searches(CS).While receiving a question in a new conversational search,the model determines the question that refers tomore pastCS.Themodel then infers past contextual data related to the given question and predicts an answer based on the context inferred without engaging in multi-turn interactions or requesting additional data from the user for context.This model shows the ability to use the limited information in user queries for best context inferences based on Closed-Domain-based CS and Bidirectional Encoder Representations from Transformers for textual representations.
基金Supported by the Foundation of National Labora-tory for Modern Communications(51436050505KG0101)
文摘Security experts have not formally defined the distinction between viruses and normal programs. The paper takes user's intension as the criteria for malice, gives a formal definition of viruses that aim at stealing or destroying files, and proposes an algorithm to detect virus correctly. Compared with traditional definitions, this new definition is easy to understand, covers more malwares, adapts development of virus technology, and defines virus on the spot. The paper has also analyzed more than 250 real viruses and finds that they are all in the domain of the new definition, this implies that the new definition has great practical significance.
基金supported by National Natural Science Foundation of China(No.61272362)National Basic Research Program ofChina(973 Program)(No.2013CB329606)High-Tech Development Plan of Xinjiang(No.201212124)
文摘Recent progress of Web 2.0 applications has witnessed the rapid development of microblog in China, which has already been one of the most important ways for online communications, especially on sharing information. This paper tries to make an in-depth investigation on the big data modeling and analysis of microblog ecosystem in China by using a real dataset containing over17 million records of SinaWeibo users. First, we present the detailed geography, gender, authentication, education and age analysis of microblog users in this dataset. Then we conduct the numerical features distribution analysis, propose the user influence formula and calculate the influences for different kinds of microblog users. Finally, user content intention analysis is performed to reveal users most concerns in their daily life.
基金Supported by the National Natural Science Foundation of China(6137316861202387)+1 种基金Major Projects of National Science and Technology of China(2010ZX03006-001-01)Doctoral Fund of Ministry of Education of China(20120141110002)
文摘We analyze the attack steps of malware and focus on the malware loading. Our assumption is that a malware contains no less than one module, so monitoring module loading is indispensable to defeat malware. Moreover, we design security policies and employ these policies when a module is loaded by the operating system. These policies depend on properties of module, the connection to created modules, and the link to user intention. The properties of module and this connection can improve the accuracy of malware detection. User intention can be helpful to handle unknown module and enhances the flexibility of policy. Finally, ModuleGuard, a gatekeeper for dynamic module loading against malware, has been designed and implemented, which integrates these security policies. Our experimental results have shown the feasibility and effectiveness of our method.
文摘The human-computer dialogue has recently attracted extensive attention from both academia and industry as an important branch in the field of artificial intelligence(AI).However,there are few studies on the evaluation of large-scale Chinese human-computer dialogue systems.In this paper,we introduce the Second Evaluation of Chinese Human-Computer Dialogue Technology,which focuses on the identification of a user’s intents and intelligent processing of intent words.The Evaluation consists of user intent classification(Task 1)and online testing of task-oriented dialogues(Task 2),the data sets of which are provided by iFLYTEK Corporation.The evaluation tasks and data sets are introduced in detail,and meanwhile,the evaluation results and the existing problems in the evaluation are discussed.