Although the use of heterosis in maize breeding has increased crop productivity,the genetic causes underlying heterosis for nitrogen(N) use efficiency(NUE) have been insufficiently investigated.In this study,five N-re...Although the use of heterosis in maize breeding has increased crop productivity,the genetic causes underlying heterosis for nitrogen(N) use efficiency(NUE) have been insufficiently investigated.In this study,five N-response traits and five low-N-tolerance traits were investigated using two inbred line populations(ILs) consisting of recombinant inbred lines(RIL) and advanced backcross(ABL) populations,derived from crossing Ye478 with Wu312.Both populations were crossed with P178 to construct two testcross populations.IL populations,their testcross populations,and the midparent heterosis(MPH)for NUE were investigated.Kernel weight,kernel number,and kernel number per row were sensitive to N level and ILs showed higher N response than did the testcross populations.Based on a highdensity linkage map,138 quantitative trait loci(QTL) were mapped,each explaining 5.6%–38.8% of genetic variation.There were 52,34 and 52 QTL for IL populations,MPH,and testcross populations,respectively.The finding that 7.6% of QTL were common to the ILs and their testcross populations and that 11.7% were common to the MPH and testcross population indicated that heterosis for NUE traits was regulated by non-additive and non-dominant loci.A QTL on chromosome 5 explained 27% of genetic variation in all of the traits and Gln1-3 was identified as a candidate gene for this QTL.Genome-wide prediction of NUE traits in the testcross populations showed 14%–51% accuracy.Our results may be useful for clarifying the genetic basis of heterosis for NUE traits and the candidate gene may be used for genetic improvement of maize NUE.展开更多
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and...Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.展开更多
Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of...Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.展开更多
Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitr...Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitrogen management is important for solving these problems.Based on field trials in 2021 and 2022,this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height,stem diameter,crown width,yield,and water(WUE)and nitrogen use efficiency(NUE).The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity(θ_(f)),and four water levels,i.e.,adequate irrigation(W0,75%-85%θ_(f)),mild water deficit(W1,65%-75%θ_(f)),moderate water deficit(W2,55%-65%θ_(f)),and severe water deficit(W3,45%-55%θ_(f))were used,and three nitrogen application levels,i.e.,no nitrogen(N0,0 kg/hm^(2)),low nitrogen(N1,150 kg/hm^(2)),medium nitrogen(N2,300 kg/hm^(2)),and high nitrogen(N3,450 kg/hm^(2))were implied.The results showed that irrigation and nitrogen application significantly affected plant height,stem diameter,and crown width of wolfberry at different growth stages(P<0.01),and their maximum values were observed in W1N2,W0N2,and W1N3 treatments.Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment.Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment.However,under other water treatments,the values first increased and then decreased with increasing nitrogen application.Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment.Irrigation water use efficiency(IWUE,8.46 kg/(hm^(2)·mm)),WUE(6.83 kg/(hm^(2)·mm)),partial factor productivity of nitrogen(PFPN,2.56 kg/kg),and NUE(14.29 kg/kg)reached their highest values in W2N2,W1N2,W1N2,and W1N1 treatments.Results of principal component analysis(PCA)showed that yield,WUE,and NUE were better in W1N2 treatment,making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province,China and similar planting areas.展开更多
The effect of urban shrinkage has gradually become a new topic.Theoretically,urban shrinkage may exert great influence on land use efficiency(LUE)through various urban subsystems,but there is currently limited researc...The effect of urban shrinkage has gradually become a new topic.Theoretically,urban shrinkage may exert great influence on land use efficiency(LUE)through various urban subsystems,but there is currently limited research examining these pathways.Using the Super-SBM-Undesirable model and the Structural Equation Model(SEM),this study calculates the LUE of shrinking cities in Northeast China and simulates the process of urban shrinkage affecting LUE.To quantify the process of urban shrinkage affecting LUE,three mediation variables,namely the economy,public services,and innovation,are used as latent variables to apply SEM.The results show that urban shrinkage will affect LUE through a direct path and indirect paths.In the direct path,urban shrinkage leads to an improvement in LUE.In the indirect paths,the economy and innovation will transmit the negative effect of urban shrinkage on LUE,while public services will reverse this effect.An important contribution of this study is that it quantifies the paths of urban shrinkage affecting LUE,thereby expanding the understanding of urban shrinkage effect and laying a foundation for the sustainable development of shrinking cities.展开更多
Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,a...Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,and recycling in various oil palm organs relative to plant age.The experiment was conducted at the Agropalma enterprise site in the northeastern region of Para State,Brazil,evaluating seven plant age treatments:2,3,4,5,6,7,and 8 years old.Employing a completely randomized design with four replications.The results demonstrated an age-related increase in Ca concentration in petioles,rachis,arrows,male inflorescences,peduncles,and fruits.Furthermore,Ca accumulation exhibited an upward trend in all organs with progressing plant age.Notably,the study revealed an enhanced Ca use efficiency across all plant organs in correlation with the age of oil palm cultivation.These findings underscore the dynamic nutritional demands of oil palm,influencing Ca immobilization,cycling,and export throughout its developmental stages.展开更多
Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yiel...Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.展开更多
In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain (NCP). The combined effects of water and nitrogen application uniformity on the gr...In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain (NCP). The combined effects of water and nitrogen application uniformity on the grain yield, water use efficiency (WUE) and nitrogen use efficiency (NUE) have become a research hotspot. In this study, a two-year field experiment was conducted during the winter wheat growing season in 2016–2018 to evaluate the water application uniformity of a center pivot with two low pressure sprinklers (the R3000 sprinklers were installed in the first span, the corresponding treatment was RS;the D3000 sprinklers were installed in the second span, the corresponding treatment was DS) and a P85A impact sprinkler as the end gun (the corresponding treatment was EG), and to analyze its effects on grain yield, WUE and NUE. The results showed that the water application uniformity coefficients of R3000, D3000 and P85A along the radial direction of the pivot (CUH) were 87.5, 79.5 and 65%, respectively. While the uniformity coefficients along the traveling direction of the pivot (CUC) were all higher than 85%. The effects of water application uniformity of the R3000 and D3000 sprinklers on grain yield were not significant (P>0.05);however, the average grain yield of EG was significantly lower (P<0.05) than those of RS and DS, by 9.4 and 11.1% during two growing seasons, respectively. The coefficients of variation (CV) of the grain yield had a negative correlation with the uniformity coefficient. The CV of WUE was more strongly affected by the water application uniformity, compared with the WUE value, among the three treatments. The NUE of RS was higher than those of DS and EG by about 6.1 and 4.8%, respectively, but there were no significant differences in NUE among the three treatments during the two growing seasons. Although the CUH of the D3000 sprinklers was lower than that of the R3000, it had only limited effects on the grain yield, WUE and NUE. However, the cost of D3000 sprinklers is lower than that of R3000 sprinklers. Therefore, the D3000 sprinklers are recommended for winter wheat irrigation and fertigation in the NCP.展开更多
The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production...The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production of food and cash crops. The objective of this paper was to evaluate the effects of surface and subsurface drip irrigation (SDI) at 5, 20 and 35 cm depths on water's dynamic in soil (Soil moisture distribution, water's stock in soil and irrigation water use efficiency) to produce maize in semiarid climates. Field study was conducted at the Higher Institute of Agronomy of Chott Meriem, Tunisia. The results indicated that soil moisture content under subsurface drip irrigation at 35 cm (T3) depth was more uniform compared to 5 cm (T1) and 20 cm (T2). Moreover, irrigation water use efficiency was higher in this treatment. Indeed, it increased about 18%, 14% and 7% for T3, T2 and T1, respectively when compared with surface drip irrigation. The results of the present study showed that SDI allows uniform soil moisture, minimize the evaporative loss and delivery water directly to the plant root zone and consequently increases use efficiency. Further research is needed in order to determine whether corn production with SDI is feasible in the arid region.展开更多
Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season...Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season rice(DDR) in Central China. The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR. Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1with a total growth duration of 85 to 97 days across all treatments with N application. Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield. Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates. The moderate N rates of 100–150 and 70–120 kg N ha–1in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR. Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity(INS) between the two seasons. Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR.展开更多
Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical...Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China.展开更多
Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key...Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key genes involved in different nodes of N pathways to boost nitrate and ammonium uptake and assimilation,and to strengthen amino acid utilization to increase grain yield and nitrogen use efficiency(NUE)in rice.The combinations OsNPF8.9a×OsNR2,OsAMT1;2×OsGS1;2×OsAS1,and OsGS2×OsAS2×OsANT3 optimized nitrate assimilation,ammonium conversion,and N reutilization,respectively.In co-overexpressing rice lines obtained by co-transformation,the tiller number,biomass,and grain yield per plant of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of wild-type ZH11,the OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line,and the OsGS2×OsAS2×OsANT3-overexpressing line.The glutamine synthase activity,free amino acids,and nitrogen utilization efficiency(NUt E)of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of ZH11 and other lines that combined key genes.N influx efficiency was increased in the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line and OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line under a low ammonium and a low nitrate treatment,respectively.We propose that combining overexpression of OsAMT1;2,OsGS1;2,and OsAS1 is a promising breeding strategy for systematically increasing rice grain yield and NUE by focusing on key nodes in the N pathway.展开更多
Terrestrial ecosystem water use efficiency(WUE)is an important indicator for coupling plant photosynthesis and transpiration,and is also a key factor linking the carbon and water cycles between the land and atmosphere...Terrestrial ecosystem water use efficiency(WUE)is an important indicator for coupling plant photosynthesis and transpiration,and is also a key factor linking the carbon and water cycles between the land and atmosphere.However,under the combination of climate change and human intervention,the change in WUE is still unclear,especially on the Tibetan Plateau(TP).Therefore,satellite remote sensing data and process-based terrestrial biosphere models(TBMs)are used in this study to investigate the spatiotemporal variations of WUE over the TP from 2001 to 2010.Then,the effects of land use and land cover change(LULCC)and CO_(2) fertilization on WUE from 1981-2010 are assessed using TBMs.Results show that climate change is the leading contributor to the change in WUE on the TP,and temperature is the most important factor.LULCC makes a negative contribution to WUE(-20.63%),which is greater than the positive contribution of CO_(2) fertilization(11.65%).In addition,CO_(2) fertilization can effectively improve ecosystem resilience on the TP.On the northwest plateau,the effects of LULCC and CO_(2) fertilization on WUE are more pronounced during the driest years than the annual average.These findings can help researchers understand the response of WUE to climate change and human activity and the coupling of the carbon and water cycles over the TP.展开更多
Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of ...Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.However,the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.The purpose of this study was to clarify these issues.Three rice cultivars currently used in rice production,an IJHR cultivar Yongyou 2640(YY2640),a japonica cultivar Lianjing 7(LJ-7)and an indica cultivar Yangdao 6(YD-6),were grown in the field with six N rates(0,100,200,300,400,and 500 kg ha^(-1))in 2018 and 2019.The results showed that with the increase in N application rates,the grain yield of each test cultivar increased at first and then decreased,and the highest grain yield was at the N rate of 400 kg ha^(-1)for YY2640,with a grain yield of 13.4 t ha^(-1),and at 300 kg ha^(-1)for LJ-7 and YD-6,with grain yields of 9.4–10.6 t ha^(-1).The grain yield and N use efficiency(NUE)of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate,especially at the higher N rates.When compared with LJ-7 or YD-6,YY2640 exhibited better physiological traits,including greater root oxidation activity and leaf photosynthetic rate,higher cytokinin content in the roots and leaves,and more remobilization of assimilates from the stem to the grain during grain filling.The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE,and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes.展开更多
A study was conducted to determine how the nitrogen(N)in the fertilisers can be quantified and what amounts of fertilizers should be given to leafy vegetables to achieve their requirements.This study also aimed to det...A study was conducted to determine how the nitrogen(N)in the fertilisers can be quantified and what amounts of fertilizers should be given to leafy vegetables to achieve their requirements.This study also aimed to determine the efficient use of water by the plant.The experiment was laid out in a randomized complete block with three replicates and three levels of urea(T0=0 kg/ha,T1=43.5 kg/ha,T2=65 kg/ha).Estimation of growth parameters and biomass yield revealed that the treatments produced statistically identical values.But numerically,T1(43.5 kg of urea/ha)gave the highest yields and T2(65 kg of urea/ha)produced the lowest.It was the same for the determination of the water use efficiency(WUE)by the plant where T1 produced the highest values compared to T2.The yield curve as a function of the applied urea dose allowed the identification of the urea dose that corresponds to optimal yield in amaranth.From the dose of 65 kg of urea/ha,any increase becomes harmful to the plant.This results in a decrease in yield in the amaranth plant.展开更多
The performance of a 3-phase 6-pole 400 W inverter-drive induction motor was investigated using a variety of non-oriented electrical steels for stator core at PWM inverter fundamental wave frequencies of 30 to 300 Hz....The performance of a 3-phase 6-pole 400 W inverter-drive induction motor was investigated using a variety of non-oriented electrical steels for stator core at PWM inverter fundamental wave frequencies of 30 to 300 Hz. There existed an optimum Si content of the material depending on the tooth flux density. Both reduction of material thickness and stress-relief annealing of the stator core improved the motor efficiency. The influence of Si content on the efficiency was small at lower PWM frequencies, while at higher frequencies the motor efficiency increased with increasing Si content. The Cu loss WC increased and the Fe loss Wi counteractiveiy decreasedwith increasing Si content at lower frequencies; while at higher frequencies Wi had dominant effect on the efficiency. Newly developed materials RMA, having lower Fe losses after stress-relief annealing and higher flux densities with lower Si contents, showed motor efficiencies superior to conventional J1S grade materials with comparable Fe losses.展开更多
The article describes the possibilities of application of simulation modeling for the analysis of infrastructure and technology of transport services of enterprises. The main technological and possible economic effect...The article describes the possibilities of application of simulation modeling for the analysis of infrastructure and technology of transport services of enterprises. The main technological and possible economic effects for the enterprises arising at performance of modeling of a transport component of their work are resulted.展开更多
Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of ...Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of water in cladodes,and reduce root growth.Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi(AMF)to adapt to drought stress.Water stress can limit plant growth and biomass production,which can be rehabilitated by AMF association through improved physiological performance.The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass,photosynthesis,and water use efficiency of the spiny and spineless O.ficus-indica.The experiment was conducted in a greenhouse with a full factorial experiment using O.ficus-indica type(spiny or spineless),AMF(presence or absence),and four soil water available(SWA)treatments through seven replications.Water treatments applied were 0%–25%SWA(T1),25%–50%SWA(T2),50%–75%SWA(T3),and 75%–100%SWA(T4).Drought stress reduced biomass and cladode growth,while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O.ficus-indica.AMF presence significantly increased biomass of both O.ficus-indica plant types through improved growth,photosynthetic water use efficiency,and photosynthesis.The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency.Net photosynthesis,photosynthetic water use efficiency,transpiration,and stomatal conductance rate significantly decreased with increased drought stress.Under drought stress,some planted mother cladodes with the absence of AMF have not established daughter cladodes,whereas AMF-inoculated mother cladodes fully established daughter cladodes.AMF root colonization significantly increased with the decrease of SWA.AMF caused an increase in biomass production,increased tolerance to drought stress,and improved photosynthesis and water use efficiency performance of O.ficus-indica.The potential of O.ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.展开更多
North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the neg...North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the negative impact of water shortage.This study investigated the impacts of CD at different levels on drainage outflow,water table level,nitrate loss,grain yield,and water use efficiency(WUE)of various wheat cultivars.Two levels of CD,i.e.,0.4 m below the soil surface(CD-0.4)and 0.8 m below the soil surface(CD-0.8),were compared with subsurface free drainage(SFD)at 1.2 m below the soil surface(SFD-1.2).Under each drainage treatment,four wheat cultivars were grown for two growing seasons(November 2018–April 2019 and November 2019–April 2020).Compared with SFD-1.2,CD-0.4 and CD-0.8 decreased irrigation water by 42.0%and 19.9%,drainage outflow by 40.3%and 27.3%,and nitrate loss by 35.3%and 20.8%,respectively.Under CD treatments,plants absorbed a significant portion of their evapotranspiration from shallow groundwater(22.0%and 8.0%for CD-0.4 and CD-0.8,respectively).All wheat cultivars positively responded to CD treatments,and the highest grain yield and straw yield were obtained under CD-0.4 treatment.Using the initial soil salinity as a reference,the soil salinity under CD-0.4 treatment increased two-fold by the end of the second growing season without negative impacts on wheat yield.Modifying the drainage system by raising the outlet elevation and considering shallow groundwater contribution to crop evapotranspiration promoted water-saving and WUE.Different responses could be obtained based on the different plant tolerance to salinity and water stress,crop characteristics,and growth stage.Site-specific soil salinity management practices will be required to avoid soil salinization due to the adoption of long-term shallow groundwater in Egypt and other similar agroecosystems.展开更多
Background Nitrate leaching to groundwater and surface water and ammonia volatilization from dairy farms have negative impacts on the environment.Meanwhile,the increasing demand for dairy products will result in more ...Background Nitrate leaching to groundwater and surface water and ammonia volatilization from dairy farms have negative impacts on the environment.Meanwhile,the increasing demand for dairy products will result in more pollution if N losses are not controlled.Therefore,a more efficient,and environmentally friendly production system is needed,in which nitrogen use efficiency(NUE)of dairy cows plays a key role.To genetically improve NUE,extensively recorded and cost-effective proxies are essential,which can be obtained by including mid-infrared(MIR)spectra of milk in prediction models for NUE.This study aimed to develop and validate the best prediction model of NUE,nitrogen loss(NL)and dry matter intake(DMI)for individual dairy cows in China.Results A total of 86 lactating Chinese Holstein cows were used in this study.After data editing,704 records were obtained for calibration and validation.Six prediction models with three different machine learning algorithms and three kinds of pre-processed MIR spectra were developed for each trait.Results showed that the coefficient of determination(R2)of the best model in within-herd validation was 0.66 for NUE,0.58 for NL and 0.63 for DMI.For external validation,reasonable prediction results were only observed for NUE,with R2 ranging from 0.58 to 0.63,while the R2 of the other two traits was below 0.50.The infrared waves from 973.54 to 988.46 cm−1 and daily milk yield were the most important variables for prediction.Conclusion The results showed that individual NUE can be predicted with a moderate accuracy in both within-herd and external validations.The model of NUE could be used for the datasets that are similar to the calibration dataset.The prediction models for NL and 3-day moving average of DMI(DMI_a)generated lower accuracies in within-herd validation.Results also indicated that information of MIR spectra variables increased the predictive ability of models.Additionally,pre-processed MIR spectra do not result in higher accuracy than original MIR spectra in the external validation.These models will be applied to large-scale data to further investigate the genetic architecture of N efficiency and further reduce the adverse impacts on the environment after more data is collected.展开更多
基金financially supported by the National Key Research and Development Program of China (2021YFD1200700)the National Natural Science Foundation of China (31972485,31971948)the Hainan Provincial Science and Technology Plan Sanya Yazhou Bay Science and Technology City Joint Project(320LH011)。
文摘Although the use of heterosis in maize breeding has increased crop productivity,the genetic causes underlying heterosis for nitrogen(N) use efficiency(NUE) have been insufficiently investigated.In this study,five N-response traits and five low-N-tolerance traits were investigated using two inbred line populations(ILs) consisting of recombinant inbred lines(RIL) and advanced backcross(ABL) populations,derived from crossing Ye478 with Wu312.Both populations were crossed with P178 to construct two testcross populations.IL populations,their testcross populations,and the midparent heterosis(MPH)for NUE were investigated.Kernel weight,kernel number,and kernel number per row were sensitive to N level and ILs showed higher N response than did the testcross populations.Based on a highdensity linkage map,138 quantitative trait loci(QTL) were mapped,each explaining 5.6%–38.8% of genetic variation.There were 52,34 and 52 QTL for IL populations,MPH,and testcross populations,respectively.The finding that 7.6% of QTL were common to the ILs and their testcross populations and that 11.7% were common to the MPH and testcross population indicated that heterosis for NUE traits was regulated by non-additive and non-dominant loci.A QTL on chromosome 5 explained 27% of genetic variation in all of the traits and Gln1-3 was identified as a candidate gene for this QTL.Genome-wide prediction of NUE traits in the testcross populations showed 14%–51% accuracy.Our results may be useful for clarifying the genetic basis of heterosis for NUE traits and the candidate gene may be used for genetic improvement of maize NUE.
基金supported by the National Key Research and Development Program of China(2016YFD0600201)the National Nonprofit Institute Research Grant of CAF(CAFYBB2017ZB003)+1 种基金the National Natural Science Foundation of China(3187071631670720)。
文摘Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.
基金supported by the Key R&D Plan of Hubei Province,China(2022BBA002)the Carbon Account Accounting and Carbon Reduction and Sequestration Technology Research of Quzhou City of China(2022-31).
文摘Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.
基金funded by the National Natural Science Foundation of China(51969003)the Key Research and Development Project of Gansu Province(22YF7NA110)+4 种基金the Discipline Team Construction Project of Gansu Agricultural Universitythe Gansu Agricultural University Youth Mentor Support Fund Project(GAU-QDFC-2022-22)the Innovation Fund Project of Higher Education in Gansu Province(2022B-101)the Research Team Construction Project of College of Water Conservancy and Hydropower Engineering,Gansu Agricultural University(Gaucwky-01)the Gansu Water Science Experimental Research and Technology Extension Program(22GSLK023)。
文摘Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitrogen management is important for solving these problems.Based on field trials in 2021 and 2022,this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height,stem diameter,crown width,yield,and water(WUE)and nitrogen use efficiency(NUE).The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity(θ_(f)),and four water levels,i.e.,adequate irrigation(W0,75%-85%θ_(f)),mild water deficit(W1,65%-75%θ_(f)),moderate water deficit(W2,55%-65%θ_(f)),and severe water deficit(W3,45%-55%θ_(f))were used,and three nitrogen application levels,i.e.,no nitrogen(N0,0 kg/hm^(2)),low nitrogen(N1,150 kg/hm^(2)),medium nitrogen(N2,300 kg/hm^(2)),and high nitrogen(N3,450 kg/hm^(2))were implied.The results showed that irrigation and nitrogen application significantly affected plant height,stem diameter,and crown width of wolfberry at different growth stages(P<0.01),and their maximum values were observed in W1N2,W0N2,and W1N3 treatments.Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment.Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment.However,under other water treatments,the values first increased and then decreased with increasing nitrogen application.Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment.Irrigation water use efficiency(IWUE,8.46 kg/(hm^(2)·mm)),WUE(6.83 kg/(hm^(2)·mm)),partial factor productivity of nitrogen(PFPN,2.56 kg/kg),and NUE(14.29 kg/kg)reached their highest values in W2N2,W1N2,W1N2,and W1N1 treatments.Results of principal component analysis(PCA)showed that yield,WUE,and NUE were better in W1N2 treatment,making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province,China and similar planting areas.
基金Under the auspices of the National Natural Science Foundation of China(No.42071219,42171198)。
文摘The effect of urban shrinkage has gradually become a new topic.Theoretically,urban shrinkage may exert great influence on land use efficiency(LUE)through various urban subsystems,but there is currently limited research examining these pathways.Using the Super-SBM-Undesirable model and the Structural Equation Model(SEM),this study calculates the LUE of shrinking cities in Northeast China and simulates the process of urban shrinkage affecting LUE.To quantify the process of urban shrinkage affecting LUE,three mediation variables,namely the economy,public services,and innovation,are used as latent variables to apply SEM.The results show that urban shrinkage will affect LUE through a direct path and indirect paths.In the direct path,urban shrinkage leads to an improvement in LUE.In the indirect paths,the economy and innovation will transmit the negative effect of urban shrinkage on LUE,while public services will reverse this effect.An important contribution of this study is that it quantifies the paths of urban shrinkage affecting LUE,thereby expanding the understanding of urban shrinkage effect and laying a foundation for the sustainable development of shrinking cities.
文摘Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,and recycling in various oil palm organs relative to plant age.The experiment was conducted at the Agropalma enterprise site in the northeastern region of Para State,Brazil,evaluating seven plant age treatments:2,3,4,5,6,7,and 8 years old.Employing a completely randomized design with four replications.The results demonstrated an age-related increase in Ca concentration in petioles,rachis,arrows,male inflorescences,peduncles,and fruits.Furthermore,Ca accumulation exhibited an upward trend in all organs with progressing plant age.Notably,the study revealed an enhanced Ca use efficiency across all plant organs in correlation with the age of oil palm cultivation.These findings underscore the dynamic nutritional demands of oil palm,influencing Ca immobilization,cycling,and export throughout its developmental stages.
基金research support from the National Key Research and Development Program of China (2016YFD0300110, 2016YFD0300101)the National Basic Research Program of China (2015CB150401)+2 种基金the National Natural Science Foundation of China (31360302)the Science and Technology Program of the Sixth Division of Xinjiang Construction Corps in China (1703)the Agricultural Science and Technology Innovation Program for financial support.
文摘Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.
基金The research was supported by the National Key Research and Development Program of China(2017YFDO201502)the National Natural Science Foundation of China(51621061 and 51939005)+1 种基金the Science and Technology Open Cooperation Project of Henan Province,China(172106000015)the Open Fund of NationalEngineering Laboratory of Crop Stress Resistance Breeding,China(NELCOF20190104).
文摘In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain (NCP). The combined effects of water and nitrogen application uniformity on the grain yield, water use efficiency (WUE) and nitrogen use efficiency (NUE) have become a research hotspot. In this study, a two-year field experiment was conducted during the winter wheat growing season in 2016–2018 to evaluate the water application uniformity of a center pivot with two low pressure sprinklers (the R3000 sprinklers were installed in the first span, the corresponding treatment was RS;the D3000 sprinklers were installed in the second span, the corresponding treatment was DS) and a P85A impact sprinkler as the end gun (the corresponding treatment was EG), and to analyze its effects on grain yield, WUE and NUE. The results showed that the water application uniformity coefficients of R3000, D3000 and P85A along the radial direction of the pivot (CUH) were 87.5, 79.5 and 65%, respectively. While the uniformity coefficients along the traveling direction of the pivot (CUC) were all higher than 85%. The effects of water application uniformity of the R3000 and D3000 sprinklers on grain yield were not significant (P>0.05);however, the average grain yield of EG was significantly lower (P<0.05) than those of RS and DS, by 9.4 and 11.1% during two growing seasons, respectively. The coefficients of variation (CV) of the grain yield had a negative correlation with the uniformity coefficient. The CV of WUE was more strongly affected by the water application uniformity, compared with the WUE value, among the three treatments. The NUE of RS was higher than those of DS and EG by about 6.1 and 4.8%, respectively, but there were no significant differences in NUE among the three treatments during the two growing seasons. Although the CUH of the D3000 sprinklers was lower than that of the R3000, it had only limited effects on the grain yield, WUE and NUE. However, the cost of D3000 sprinklers is lower than that of R3000 sprinklers. Therefore, the D3000 sprinklers are recommended for winter wheat irrigation and fertigation in the NCP.
文摘The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production of food and cash crops. The objective of this paper was to evaluate the effects of surface and subsurface drip irrigation (SDI) at 5, 20 and 35 cm depths on water's dynamic in soil (Soil moisture distribution, water's stock in soil and irrigation water use efficiency) to produce maize in semiarid climates. Field study was conducted at the Higher Institute of Agronomy of Chott Meriem, Tunisia. The results indicated that soil moisture content under subsurface drip irrigation at 35 cm (T3) depth was more uniform compared to 5 cm (T1) and 20 cm (T2). Moreover, irrigation water use efficiency was higher in this treatment. Indeed, it increased about 18%, 14% and 7% for T3, T2 and T1, respectively when compared with surface drip irrigation. The results of the present study showed that SDI allows uniform soil moisture, minimize the evaporative loss and delivery water directly to the plant root zone and consequently increases use efficiency. Further research is needed in order to determine whether corn production with SDI is feasible in the arid region.
基金supported by the National Natural Science Foundation of China(31971845 and 32101819)the earmarked fund for China Agriculture Research System(CARS-01-20)the China Postdoctoral Science Foundation(2021M691179)。
文摘Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season rice(DDR) in Central China. The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR. Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1with a total growth duration of 85 to 97 days across all treatments with N application. Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield. Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates. The moderate N rates of 100–150 and 70–120 kg N ha–1in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR. Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity(INS) between the two seasons. Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR.
基金supported by the National Natural Science Foundation of China (41671301)the National Key Research and Development Program of China (2016YFD0300901)the Central Public-interest Scientific Institution Basal Research Fund, China (GY2022-13-5, G2022-02-2, G2022-02-3 and G2022-02-10)
文摘Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China.
基金supported by the National Natural Science Foundation of China(32260498)the Guizhou Provincial Science and Technology Project(qiankehejichu-ZK(2022)Key 008)+2 种基金the Wuhan Science and Technology Project(2020020601012259)the Guizhou Provincial Science and Technology Support Plan(qiankehezhicheng(2022)Key 026)the Key Cultivation Project of Guizhou University(201903)。
文摘Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key genes involved in different nodes of N pathways to boost nitrate and ammonium uptake and assimilation,and to strengthen amino acid utilization to increase grain yield and nitrogen use efficiency(NUE)in rice.The combinations OsNPF8.9a×OsNR2,OsAMT1;2×OsGS1;2×OsAS1,and OsGS2×OsAS2×OsANT3 optimized nitrate assimilation,ammonium conversion,and N reutilization,respectively.In co-overexpressing rice lines obtained by co-transformation,the tiller number,biomass,and grain yield per plant of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of wild-type ZH11,the OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line,and the OsGS2×OsAS2×OsANT3-overexpressing line.The glutamine synthase activity,free amino acids,and nitrogen utilization efficiency(NUt E)of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of ZH11 and other lines that combined key genes.N influx efficiency was increased in the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line and OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line under a low ammonium and a low nitrate treatment,respectively.We propose that combining overexpression of OsAMT1;2,OsGS1;2,and OsAS1 is a promising breeding strategy for systematically increasing rice grain yield and NUE by focusing on key nodes in the N pathway.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0206)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20100300)+2 种基金the Youth Innovation Promotion Association CAS (2021073)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility ” (EarthLab), the Natural Science Foundation of Hunan Province (Grant No. 2020JJ4074)the Open Fund Project of Key Lab of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education (2021VGE04)
文摘Terrestrial ecosystem water use efficiency(WUE)is an important indicator for coupling plant photosynthesis and transpiration,and is also a key factor linking the carbon and water cycles between the land and atmosphere.However,under the combination of climate change and human intervention,the change in WUE is still unclear,especially on the Tibetan Plateau(TP).Therefore,satellite remote sensing data and process-based terrestrial biosphere models(TBMs)are used in this study to investigate the spatiotemporal variations of WUE over the TP from 2001 to 2010.Then,the effects of land use and land cover change(LULCC)and CO_(2) fertilization on WUE from 1981-2010 are assessed using TBMs.Results show that climate change is the leading contributor to the change in WUE on the TP,and temperature is the most important factor.LULCC makes a negative contribution to WUE(-20.63%),which is greater than the positive contribution of CO_(2) fertilization(11.65%).In addition,CO_(2) fertilization can effectively improve ecosystem resilience on the TP.On the northwest plateau,the effects of LULCC and CO_(2) fertilization on WUE are more pronounced during the driest years than the annual average.These findings can help researchers understand the response of WUE to climate change and human activity and the coupling of the carbon and water cycles over the TP.
基金grateful for grants from the National Natural Science Foundation of China(32071943)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD-2020-01)+1 种基金the Postgraduate Research and Innovation Program of Jiangsu Province,China(XKYCX17_052)the Top Talent Supporting Program of Yangzhou University,China(2015-01).
文摘Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.However,the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.The purpose of this study was to clarify these issues.Three rice cultivars currently used in rice production,an IJHR cultivar Yongyou 2640(YY2640),a japonica cultivar Lianjing 7(LJ-7)and an indica cultivar Yangdao 6(YD-6),were grown in the field with six N rates(0,100,200,300,400,and 500 kg ha^(-1))in 2018 and 2019.The results showed that with the increase in N application rates,the grain yield of each test cultivar increased at first and then decreased,and the highest grain yield was at the N rate of 400 kg ha^(-1)for YY2640,with a grain yield of 13.4 t ha^(-1),and at 300 kg ha^(-1)for LJ-7 and YD-6,with grain yields of 9.4–10.6 t ha^(-1).The grain yield and N use efficiency(NUE)of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate,especially at the higher N rates.When compared with LJ-7 or YD-6,YY2640 exhibited better physiological traits,including greater root oxidation activity and leaf photosynthetic rate,higher cytokinin content in the roots and leaves,and more remobilization of assimilates from the stem to the grain during grain filling.The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE,and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes.
基金The authors’ thanks go to the International AtomicEnergy Agency (IAEA) for funding the fellowshipand experiments. Their gratitude goes to the authorities of the National Centre for AgronomicResearch (CNRA) and the IAEA National LiaisonOfficers (NLO) of Côte d’Ivoire who made thisfellowship possible. Their thanks also go to theauthorities of Kenya Agricultural and LivestockResearch Organization (KALRO) and Irrigation andDrainage Management and Problem of Soil (IDMPS)Program for hosting the fellowship.
文摘A study was conducted to determine how the nitrogen(N)in the fertilisers can be quantified and what amounts of fertilizers should be given to leafy vegetables to achieve their requirements.This study also aimed to determine the efficient use of water by the plant.The experiment was laid out in a randomized complete block with three replicates and three levels of urea(T0=0 kg/ha,T1=43.5 kg/ha,T2=65 kg/ha).Estimation of growth parameters and biomass yield revealed that the treatments produced statistically identical values.But numerically,T1(43.5 kg of urea/ha)gave the highest yields and T2(65 kg of urea/ha)produced the lowest.It was the same for the determination of the water use efficiency(WUE)by the plant where T1 produced the highest values compared to T2.The yield curve as a function of the applied urea dose allowed the identification of the urea dose that corresponds to optimal yield in amaranth.From the dose of 65 kg of urea/ha,any increase becomes harmful to the plant.This results in a decrease in yield in the amaranth plant.
文摘The performance of a 3-phase 6-pole 400 W inverter-drive induction motor was investigated using a variety of non-oriented electrical steels for stator core at PWM inverter fundamental wave frequencies of 30 to 300 Hz. There existed an optimum Si content of the material depending on the tooth flux density. Both reduction of material thickness and stress-relief annealing of the stator core improved the motor efficiency. The influence of Si content on the efficiency was small at lower PWM frequencies, while at higher frequencies the motor efficiency increased with increasing Si content. The Cu loss WC increased and the Fe loss Wi counteractiveiy decreasedwith increasing Si content at lower frequencies; while at higher frequencies Wi had dominant effect on the efficiency. Newly developed materials RMA, having lower Fe losses after stress-relief annealing and higher flux densities with lower Si contents, showed motor efficiencies superior to conventional J1S grade materials with comparable Fe losses.
文摘The article describes the possibilities of application of simulation modeling for the analysis of infrastructure and technology of transport services of enterprises. The main technological and possible economic effects for the enterprises arising at performance of modeling of a transport component of their work are resulted.
基金supported by the Ethiopian Ministry of Education.
文摘Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of water in cladodes,and reduce root growth.Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi(AMF)to adapt to drought stress.Water stress can limit plant growth and biomass production,which can be rehabilitated by AMF association through improved physiological performance.The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass,photosynthesis,and water use efficiency of the spiny and spineless O.ficus-indica.The experiment was conducted in a greenhouse with a full factorial experiment using O.ficus-indica type(spiny or spineless),AMF(presence or absence),and four soil water available(SWA)treatments through seven replications.Water treatments applied were 0%–25%SWA(T1),25%–50%SWA(T2),50%–75%SWA(T3),and 75%–100%SWA(T4).Drought stress reduced biomass and cladode growth,while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O.ficus-indica.AMF presence significantly increased biomass of both O.ficus-indica plant types through improved growth,photosynthetic water use efficiency,and photosynthesis.The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency.Net photosynthesis,photosynthetic water use efficiency,transpiration,and stomatal conductance rate significantly decreased with increased drought stress.Under drought stress,some planted mother cladodes with the absence of AMF have not established daughter cladodes,whereas AMF-inoculated mother cladodes fully established daughter cladodes.AMF root colonization significantly increased with the decrease of SWA.AMF caused an increase in biomass production,increased tolerance to drought stress,and improved photosynthesis and water use efficiency performance of O.ficus-indica.The potential of O.ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.
文摘North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the negative impact of water shortage.This study investigated the impacts of CD at different levels on drainage outflow,water table level,nitrate loss,grain yield,and water use efficiency(WUE)of various wheat cultivars.Two levels of CD,i.e.,0.4 m below the soil surface(CD-0.4)and 0.8 m below the soil surface(CD-0.8),were compared with subsurface free drainage(SFD)at 1.2 m below the soil surface(SFD-1.2).Under each drainage treatment,four wheat cultivars were grown for two growing seasons(November 2018–April 2019 and November 2019–April 2020).Compared with SFD-1.2,CD-0.4 and CD-0.8 decreased irrigation water by 42.0%and 19.9%,drainage outflow by 40.3%and 27.3%,and nitrate loss by 35.3%and 20.8%,respectively.Under CD treatments,plants absorbed a significant portion of their evapotranspiration from shallow groundwater(22.0%and 8.0%for CD-0.4 and CD-0.8,respectively).All wheat cultivars positively responded to CD treatments,and the highest grain yield and straw yield were obtained under CD-0.4 treatment.Using the initial soil salinity as a reference,the soil salinity under CD-0.4 treatment increased two-fold by the end of the second growing season without negative impacts on wheat yield.Modifying the drainage system by raising the outlet elevation and considering shallow groundwater contribution to crop evapotranspiration promoted water-saving and WUE.Different responses could be obtained based on the different plant tolerance to salinity and water stress,crop characteristics,and growth stage.Site-specific soil salinity management practices will be required to avoid soil salinization due to the adoption of long-term shallow groundwater in Egypt and other similar agroecosystems.
基金supported by the earmarked fund for China Agriculture Research System (CARS-36)the Key Research Project of Henan Province (221111111100)+3 种基金the Key Research Project of Ningxia Hui Autonomous Region (2022BBF02017)the Program for Changjiang Scholar and Innovation Research Team in University (IRT_15R62)China Scholarship Council (No.201913043)Hainan University.
文摘Background Nitrate leaching to groundwater and surface water and ammonia volatilization from dairy farms have negative impacts on the environment.Meanwhile,the increasing demand for dairy products will result in more pollution if N losses are not controlled.Therefore,a more efficient,and environmentally friendly production system is needed,in which nitrogen use efficiency(NUE)of dairy cows plays a key role.To genetically improve NUE,extensively recorded and cost-effective proxies are essential,which can be obtained by including mid-infrared(MIR)spectra of milk in prediction models for NUE.This study aimed to develop and validate the best prediction model of NUE,nitrogen loss(NL)and dry matter intake(DMI)for individual dairy cows in China.Results A total of 86 lactating Chinese Holstein cows were used in this study.After data editing,704 records were obtained for calibration and validation.Six prediction models with three different machine learning algorithms and three kinds of pre-processed MIR spectra were developed for each trait.Results showed that the coefficient of determination(R2)of the best model in within-herd validation was 0.66 for NUE,0.58 for NL and 0.63 for DMI.For external validation,reasonable prediction results were only observed for NUE,with R2 ranging from 0.58 to 0.63,while the R2 of the other two traits was below 0.50.The infrared waves from 973.54 to 988.46 cm−1 and daily milk yield were the most important variables for prediction.Conclusion The results showed that individual NUE can be predicted with a moderate accuracy in both within-herd and external validations.The model of NUE could be used for the datasets that are similar to the calibration dataset.The prediction models for NL and 3-day moving average of DMI(DMI_a)generated lower accuracies in within-herd validation.Results also indicated that information of MIR spectra variables increased the predictive ability of models.Additionally,pre-processed MIR spectra do not result in higher accuracy than original MIR spectra in the external validation.These models will be applied to large-scale data to further investigate the genetic architecture of N efficiency and further reduce the adverse impacts on the environment after more data is collected.