The preconditioner for parameterized inexact Uzawa methods have been used to solve some indefinite saddle point problems. Firstly, we modify the preconditioner by making it more generalized, then we use theoretical an...The preconditioner for parameterized inexact Uzawa methods have been used to solve some indefinite saddle point problems. Firstly, we modify the preconditioner by making it more generalized, then we use theoretical analyses to show that the iteration method converges under certain conditions. Moreover, we discuss the optimal parameter and matrices based on these conditions. Finally, we propose two improved methods. Numerical experiments are provided to show the effectiveness of the modified preconditioner. All methods have fantastic convergence rates by choosing the optimal parameter and matrices.展开更多
An Uzawa-type algorithm is designed for the coupled Stokes equations discretized by the mixed finite element method.The velocity solved by the presented algorithm is weakly divergence-free,which is different from the ...An Uzawa-type algorithm is designed for the coupled Stokes equations discretized by the mixed finite element method.The velocity solved by the presented algorithm is weakly divergence-free,which is different from the one solved by the common Uzawa method.Besides,an optimal relaxation parameter of the presented algorithm is provided.展开更多
.In this paper,an augmented Lagrangian Uzawa iterative method is developed and analyzed for solving a class of double saddle-point systems with semidefinite(2,2)block.Convergence of the iterativemethod is proved under....In this paper,an augmented Lagrangian Uzawa iterative method is developed and analyzed for solving a class of double saddle-point systems with semidefinite(2,2)block.Convergence of the iterativemethod is proved under the assumption that the double saddle-point problem exists a unique solution.An application of the iterative method to the double saddle-point systems arising from the distributed Lagrange multiplier/fictitious domain(DLM/FD)finite element method for solving elliptic interface problems is also presented,in which the existence and uniqueness of the double saddle-point system is guaranteed by the analysis of the DLM/FD finite element method.Numerical experiments are conducted to validate the theoretical results and to study the performance of the proposed iterative method.展开更多
In this paper,the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed.An analysis of their convergence is pre...In this paper,the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed.An analysis of their convergence is presented and the upper bounds of the convergence rates are derived.Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm,the convergence rate is uniformly bounded away from 1 if τh^-2 is kept bounded,where τ is the time step size and h the space mesh size.展开更多
文摘The preconditioner for parameterized inexact Uzawa methods have been used to solve some indefinite saddle point problems. Firstly, we modify the preconditioner by making it more generalized, then we use theoretical analyses to show that the iteration method converges under certain conditions. Moreover, we discuss the optimal parameter and matrices based on these conditions. Finally, we propose two improved methods. Numerical experiments are provided to show the effectiveness of the modified preconditioner. All methods have fantastic convergence rates by choosing the optimal parameter and matrices.
基金Project supported by the National Natural Science Foundation of China(No.11861067)。
文摘An Uzawa-type algorithm is designed for the coupled Stokes equations discretized by the mixed finite element method.The velocity solved by the presented algorithm is weakly divergence-free,which is different from the one solved by the common Uzawa method.Besides,an optimal relaxation parameter of the presented algorithm is provided.
基金supported by the 10 plus 10 project of Tongji University(No.4260141304/004/010).
文摘.In this paper,an augmented Lagrangian Uzawa iterative method is developed and analyzed for solving a class of double saddle-point systems with semidefinite(2,2)block.Convergence of the iterativemethod is proved under the assumption that the double saddle-point problem exists a unique solution.An application of the iterative method to the double saddle-point systems arising from the distributed Lagrange multiplier/fictitious domain(DLM/FD)finite element method for solving elliptic interface problems is also presented,in which the existence and uniqueness of the double saddle-point system is guaranteed by the analysis of the DLM/FD finite element method.Numerical experiments are conducted to validate the theoretical results and to study the performance of the proposed iterative method.
基金supported by the National Natural Science Foundation (10871179) of China
文摘In this paper,the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed.An analysis of their convergence is presented and the upper bounds of the convergence rates are derived.Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm,the convergence rate is uniformly bounded away from 1 if τh^-2 is kept bounded,where τ is the time step size and h the space mesh size.