This paper reviews recent developments of V microalloying technology and its applications in HSLA steels.Enhanced-nitrogen in V-containing steel promotes precipitation of fine V(C,N) particles,and improves markedly pr...This paper reviews recent developments of V microalloying technology and its applications in HSLA steels.Enhanced-nitrogen in V-containing steel promotes precipitation of fine V(C,N) particles,and improves markedly precipitation strengthening effectiveness of vanadium,therefore,there is a significant saving of V addition in the same strength requirement.Vanadium can be used effectively for ferrite grain refinement by the nucleation of intragranular ferrite promoted by VN precipitates in Austenite.The combination of intragranular ferrite (IGF) on VN particles and the recrystallization controlled rolling (RCR) technology realize the grain refinement in V-containing steel.V-N process is a cost-effective way for high strength rebars,forging steels and thin slab direct rolling strips.展开更多
Deformation-induced ferrite transformation (DIFT) has been proved to be an effective approach to refine ferrite grains. This paper shows that the ferrite grains can further be refined through combination of DIFT and...Deformation-induced ferrite transformation (DIFT) has been proved to be an effective approach to refine ferrite grains. This paper shows that the ferrite grains can further be refined through combination of DIFT and V or V-N microalloying. Vanadium dissolved in γ matrix restrains DIFT. During deformation, vanadium carbonitrides rapidly precipitate due to strain-induced precipitation, which causes decrease in vanadium dissolved in matrix and indirectly accelerates DIFT. Under heavy deformation, deformation induced ferrite (DIF) grains in V microalloyed steel were finer than those in V free steel. The more V added to steel, the finer DIF grains obtained. Moreover, the addition of N to V microalloyed steels can remarkably accelerate precipitation of V, and then promote DIFT. However, DIF grains in V-N microalloyed steel easily coarsen.展开更多
基金U.S.Strategy Mineral Corporation(Stratcor)for their long term financial support on the research works
文摘This paper reviews recent developments of V microalloying technology and its applications in HSLA steels.Enhanced-nitrogen in V-containing steel promotes precipitation of fine V(C,N) particles,and improves markedly precipitation strengthening effectiveness of vanadium,therefore,there is a significant saving of V addition in the same strength requirement.Vanadium can be used effectively for ferrite grain refinement by the nucleation of intragranular ferrite promoted by VN precipitates in Austenite.The combination of intragranular ferrite (IGF) on VN particles and the recrystallization controlled rolling (RCR) technology realize the grain refinement in V-containing steel.V-N process is a cost-effective way for high strength rebars,forging steels and thin slab direct rolling strips.
文摘Deformation-induced ferrite transformation (DIFT) has been proved to be an effective approach to refine ferrite grains. This paper shows that the ferrite grains can further be refined through combination of DIFT and V or V-N microalloying. Vanadium dissolved in γ matrix restrains DIFT. During deformation, vanadium carbonitrides rapidly precipitate due to strain-induced precipitation, which causes decrease in vanadium dissolved in matrix and indirectly accelerates DIFT. Under heavy deformation, deformation induced ferrite (DIF) grains in V microalloyed steel were finer than those in V free steel. The more V added to steel, the finer DIF grains obtained. Moreover, the addition of N to V microalloyed steels can remarkably accelerate precipitation of V, and then promote DIFT. However, DIF grains in V-N microalloyed steel easily coarsen.