期刊文献+
共找到208篇文章
< 1 2 11 >
每页显示 20 50 100
A Transmission Design in Dynamic Heterogeneous V2V Networks Through Multi-Agent Deep Reinforcement Learning
1
作者 Nong Qu Chao Wang +1 位作者 Zuxing Li Fuqiang Liu 《China Communications》 SCIE CSCD 2023年第7期273-289,共17页
In highly dynamic and heterogeneous vehicular communication networks,it is challenging to efficiently utilize network resources and ensure demanding performance requirements of safetyrelated applications.This paper in... In highly dynamic and heterogeneous vehicular communication networks,it is challenging to efficiently utilize network resources and ensure demanding performance requirements of safetyrelated applications.This paper investigates machinelearning-assisted transmission design in a typical multi-user vehicle-to-vehicle(V2V)communication scenario.The transmission process proceeds sequentially along the discrete time steps,where several source nodes intend to deliver multiple different types of messages to their respective destinations within the same spectrum.Due to rapid movement of vehicles,real-time acquirement of channel knowledge and central coordination of all transmission actions are in general hard to realize.We consider applying multi-agent deep reinforcement learning(MADRL)to handle this issue.By transforming the transmission design problem into a stochastic game,a multi-agent proximal policy optimization(MAPPO)algorithm under a centralized training and decentralized execution framework is proposed such that each source decides its own transmission message type,power level,and data rate,based on local observations of the environment and feedback,to maximize its energy efficiency.Via simulations we show that our method achieves better performance over conventional methods. 展开更多
关键词 v2v communication networks SEQUENTIAL
下载PDF
A UAV-Assisted V2X Network Architecture with Separated Data Transmission and Network Control
2
作者 Xiao Ma Liang Wang +2 位作者 Weijia Han Xijun Wang Tingting Shang 《China Communications》 SCIE CSCD 2023年第6期260-276,共17页
With the explosive increasing number of connecting devices such as smart phones, vehicles,drones, and satellites in the wireless networks, how to manage and control such a huge number of networking nodes has become a ... With the explosive increasing number of connecting devices such as smart phones, vehicles,drones, and satellites in the wireless networks, how to manage and control such a huge number of networking nodes has become a great challenge. In this paper, we combine the advantages of centralized networks and distributed networks approaches for vehicular networks with the aid of Unmanned Aerial Vehicle(UAV), and propose a Center-controlled Multihop Wireless(CMW) networking scheme consisting of data transmission plane performed by vehicles and the network control plane implemented by the UAV.Besides, we jointly explore the advantages of Medium Access Control(MAC) protocols in the link layer and routing schemes in the network layer to facilitate the multi-hop data transmission for the ground vehicles.Particularly, the network control plane in the UAV can manage the whole network effectively via fully exploiting the acquired network topology information and traffic requests from each vehicle, and implements various kinds of control based on different traffic demands, which can enhance the networking flexibility and scalability significantly in vehicular networks.Simulation results validate the advantages of the proposed scheme compared with existing methods. 展开更多
关键词 v2X networks centralized network control network architecture UAv routing algorithm
下载PDF
基于改进的V-Net模型肺结节分割算法的研究
3
作者 李丽 林晓明 +1 位作者 彭丰平 潘家辉 《计算机技术与发展》 2024年第4期82-88,共7页
由于CT图像是三维图像,在原始的V-Net模型分割中,易出现结节漏检和边界分割不清晰,以及损失函数Dice训练时不稳定等问题。根据这些问题,提出3D多尺度SE V-Net,简称MSEV-Net网络,同时通过联合损失函数来提高训练的稳定性。该网络模型在V-... 由于CT图像是三维图像,在原始的V-Net模型分割中,易出现结节漏检和边界分割不清晰,以及损失函数Dice训练时不稳定等问题。根据这些问题,提出3D多尺度SE V-Net,简称MSEV-Net网络,同时通过联合损失函数来提高训练的稳定性。该网络模型在V-Net网络的基础上,使用多尺度卷积模块来替换原有的5×5×5卷积,同时在残差连接后加入SE通道注意力模块,通过不同尺度的特征融合和学习不同通道之间的关系,解决肺结节小不易分割的问题。同时在V-Net网络残差连接基础上加一条短跳跃连接,使得整个网络更好利用全局特征。联合损失函数选择Dice和交叉熵损失函数进行融合,可以很好地解决训练不稳定问题。提出的MSEV-Net网络模型和联合损失函数在平均分割准确率PA达到0.998,DSC达到0.837。实验结果表明,该方法在提高肺结节分割精度方面具有一定的效果。 展开更多
关键词 肺结节分割 v-Net网络 联合损失函数 多尺度卷积 SE模块
下载PDF
基于RISC-V的图卷积神经网络加速器设计
4
作者 周理 赵祉乔 +2 位作者 潘国腾 铁俊波 赵王 《计算机工程与科学》 CSCD 北大核心 2023年第12期2113-2120,共8页
图卷积神经网络GCN当前主要在PyTorch等深度学习框架上基于GPU实现加速。然而GCN的运算过程包含多层嵌套的矩阵乘法和数据访存操作,使用GPU虽然可以满足实时性需求,但是部署代价大、能效比低。为了提高GCN算法的计算性能并保持软件灵活... 图卷积神经网络GCN当前主要在PyTorch等深度学习框架上基于GPU实现加速。然而GCN的运算过程包含多层嵌套的矩阵乘法和数据访存操作,使用GPU虽然可以满足实时性需求,但是部署代价大、能效比低。为了提高GCN算法的计算性能并保持软件灵活性,提出一种基于RSIC-V SoC的定制GCN加速器,在蜂鸟E203的SoC平台中通过点积运算扩展指令和硬件加速器软硬件协同的方法实现了针对GCN的加速,通过神经网络参数分析确定了从浮点数到32位定点数的硬件量化方案。实验结果表明,在Cora数据集上运行GCN算法时,该加速器没有精度损失,速度最高提高了6.88倍。 展开更多
关键词 RISC-v 图卷积神经网络 硬件加速器 指令集
下载PDF
基于力反馈的金属板材V型折弯控制研究 被引量:1
5
作者 赵海文 鲁泽逸 +1 位作者 张晓宇 王佳阔 《现代制造工程》 CSCD 北大核心 2023年第1期104-109,115,共7页
为消除同批次金属板材参数波动对其折弯成型精度造成的影响,提出了一种基于力反馈的折弯角度实时控制方法。利用兰贝格-奥斯古德方程获得板材理想应力-应变曲线,在此基础上改变方程参数与板材厚度模拟其参数波动,生成输入样本。使用有... 为消除同批次金属板材参数波动对其折弯成型精度造成的影响,提出了一种基于力反馈的折弯角度实时控制方法。利用兰贝格-奥斯古德方程获得板材理想应力-应变曲线,在此基础上改变方程参数与板材厚度模拟其参数波动,生成输入样本。使用有限元分析软件ABAQUS对该样本进行仿真,获取了不同参数板材在使用相同模具时,上模受力随位移变化曲线,以及成型角度随下压行程变化曲线。建立循环神经网络模型,将上模位移与受力作为输入,成型角度作为输出,得到了根据受力变化预测成型角度的网络模型。通过仿真实验,成型角度误差为±0.6°,验证了该方法的可行性,为后续实现利用成型角度历史数据对预测模型进行智能优化的折弯控制算法奠定了基础。 展开更多
关键词 v型折弯 力反馈 参数波动 循环神经网络 角度预测
下载PDF
Image recognition and empirical application of desert plant species based on convolutional neural network 被引量:2
6
作者 LI Jicai SUN Shiding +2 位作者 JIANG Haoran TIAN Yingjie XU Xiaoliang 《Journal of Arid Land》 SCIE CSCD 2022年第12期1440-1455,共16页
In recent years,deep convolution neural network has exhibited excellent performance in computer vision and has a far-reaching impact.Traditional plant taxonomic identification requires high expertise,which is time-con... In recent years,deep convolution neural network has exhibited excellent performance in computer vision and has a far-reaching impact.Traditional plant taxonomic identification requires high expertise,which is time-consuming.Most nature reserves have problems such as incomplete species surveys,inaccurate taxonomic identification,and untimely updating of status data.Simple and accurate recognition of plant images can be achieved by applying convolutional neural network technology to explore the best network model.Taking 24 typical desert plant species that are widely distributed in the nature reserves in Xinjiang Uygur Autonomous Region of China as the research objects,this study established an image database and select the optimal network model for the image recognition of desert plant species to provide decision support for fine management in the nature reserves in Xinjiang,such as species investigation and monitoring,by using deep learning.Since desert plant species were not included in the public dataset,the images used in this study were mainly obtained through field shooting and downloaded from the Plant Photo Bank of China(PPBC).After the sorting process and statistical analysis,a total of 2331 plant images were finally collected(2071 images from field collection and 260 images from the PPBC),including 24 plant species belonging to 14 families and 22 genera.A large number of numerical experiments were also carried out to compare a series of 37 convolutional neural network models with good performance,from different perspectives,to find the optimal network model that is most suitable for the image recognition of desert plant species in Xinjiang.The results revealed 24 models with a recognition Accuracy,of greater than 70.000%.Among which,Residual Network X_8GF(RegNetX_8GF)performs the best,with Accuracy,Precision,Recall,and F1(which refers to the harmonic mean of the Precision and Recall values)values of 78.33%,77.65%,69.55%,and 71.26%,respectively.Considering the demand factors of hardware equipment and inference time,Mobile NetworkV2 achieves the best balance among the Accuracy,the number of parameters and the number of floating-point operations.The number of parameters for Mobile Network V2(MobileNetV2)is 1/16 of RegNetX_8GF,and the number of floating-point operations is 1/24.Our findings can facilitate efficient decision-making for the management of species survey,cataloging,inspection,and monitoring in the nature reserves in Xinjiang,providing a scientific basis for the protection and utilization of natural plant resources. 展开更多
关键词 desert plants image recognition deep learning convolutional neural network Residual network X_8GF(RegNetX_8GF) Mobile network v2(MobileNetv2) nature reserves
下载PDF
An Anonymous Authentication Scheme for Plugin Electric Vehicles Joining to Charging/Discharging Station in Vehicle-to-Grid(V2G) Networks 被引量:2
7
作者 CHEN Jie ZHANG Yueyu SU Wencong 《China Communications》 SCIE CSCD 2015年第3期9-19,共11页
Incorporating electric vehicles into smart grid,vehicle-to-Grid(V2G) makes it feasible to charge for large-scale electric vehicles,and in turn support electric vehicles,as mobile and distributed storage units,to disch... Incorporating electric vehicles into smart grid,vehicle-to-Grid(V2G) makes it feasible to charge for large-scale electric vehicles,and in turn support electric vehicles,as mobile and distributed storage units,to discharge to smart grid.In order to provide reliable and efficient services,the operator of V2 G networks needs to monitor realtime status of every plug-in electric vehicle(PEV) and then evaluate current electricity storage capability.Anonymity,aggregation and dynamic management are three basic but crucial characteristics of which the services of V2 G networks should be.However,few of existing authentication schemes for V2 G networks could satisfy them simultaneously.In this paper,we propose a secure and efficient authentication scheme with privacy-preserving for V2 G networks.The scheme makes the charging/discharging station authenticate PEVs anonymously and manage them dynamically.Moreover,the monitoring data collected by the charging/discharging station could be sent to a local aggregator(LAG)in batch mode.In particular,time overheads during verification stage are independent with the number of involved PEVs,and there is no need to update the membership certificate and key pair before PEV logs out. 展开更多
关键词 smart grid vehicle-to-Grid(v2G) networks anonymous authentication revocable group signature
下载PDF
基于虚拟电阻的复杂直流网络P-V下垂控制方法 被引量:1
8
作者 王辞喻 赵兴勇 《科学技术与工程》 北大核心 2023年第31期13423-13429,共7页
对于复杂直流网络控制困难的问题,现有研究很少有基于虚拟电阻的下垂系数计算方法,设计了一种将复杂电网等效为简单放射状网络的方法,并提出一种基于虚拟电阻的功率-电压(P-V)下垂控制方法。首先,定义虚拟母线及虚拟节点,将节点分为3类... 对于复杂直流网络控制困难的问题,现有研究很少有基于虚拟电阻的下垂系数计算方法,设计了一种将复杂电网等效为简单放射状网络的方法,并提出一种基于虚拟电阻的功率-电压(P-V)下垂控制方法。首先,定义虚拟母线及虚拟节点,将节点分为3类并分别处理,得到一个等效的放射状电网拓扑结构。然后,根据简化结果推导出P-V下垂系数的计算公式,得出控制策略。仿真结果表明了所提电网等效方法和基于虚拟电阻的P-V下垂控制策略的有效性和可行性。 展开更多
关键词 虚拟节点 虚拟电阻 P-v下垂控制 复杂直流系统 网络等效化简
下载PDF
ZTE to Expand World’s First Commercial IOS V5.0-based CDMA2000 Network
9
《ZTE Communications》 2006年第3期62-62,共1页
关键词 CDMA ZTE to Expand World s First Commercial IOS v5.0-based CDMA2000 network World
下载PDF
基于RISC-V的神经网络加速器硬件实现 被引量:1
10
作者 鞠虎 高营 +1 位作者 田青 周颖 《电子与封装》 2023年第2期68-73,共6页
针对第五代开放精简指令集(RISC-V)的人工智能(AI)处理器较少、先进的精简指令微处理器(ARM)架构供应链不稳定、自主可控性弱的问题,设计了以RISC-V处理器为核心的神经网络推理加速器系统级芯片(SoC)架构。采用开源项目搭建So C架构;基... 针对第五代开放精简指令集(RISC-V)的人工智能(AI)处理器较少、先进的精简指令微处理器(ARM)架构供应链不稳定、自主可控性弱的问题,设计了以RISC-V处理器为核心的神经网络推理加速器系统级芯片(SoC)架构。采用开源项目搭建So C架构;基于可变张量加速器(VTA)架构,完成深度神经网络加速器指令集设计;通过高级可扩展接口(AXI)连接处理器与VTA,并采用共享内存的方式进行数据传输;基于深度学习编译栈实现卷积运算和神经网络部署。试验结果表明,所设计的架构可灵活实现多种主流的深度神经网络推理任务,乘法累加单元(MAC)数目可以达到1024,量化长度为有符号8位整数(INT8),编译栈支持主流神经网络编译,实现了修正后的ZFNet和ResNet20神经网络图像分类演示,在现场可编程逻辑门阵列(FPGA)电路上整体准确率分别达到78.95%和84.81%。 展开更多
关键词 RISC-v 神经网络 可变张量加速器 通用矩阵乘 深度学习编译器
下载PDF
A Multi-Mode Public Transportation System Using Vehicular to Network Architecture
11
作者 Settawit Poochaya Peerapong Uthansakul +8 位作者 Monthippa Uthansakul Patikorn Anchuen Kontorn Thammakul Arfat Ahmad Khan Niwat Punanwarakorn Pech Sirivoratum Aranya Kaewkrad Panrawee Kanpan Apichart Wantamee 《Computers, Materials & Continua》 SCIE EI 2022年第12期5845-5862,共18页
The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system usi... The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system using Intelligent Transportation System(ITS)along with the limitation of personal vehicles using sharing economy model.The SUT Smart Transit is utilized as a major public transportation system,while MoreSai@SUT(electric motorcycle services)is a minor public transportation system in this work.They are called Multi-Mode Transportation system as a combination.Moreover,a Vehicle toNetwork(V2N)is used for developing theMulti-Mode Transportation system in the campus.Due to equipping vehicles with On Board Unit(OBU)and 4G LTE modules,the real time speed and locations are transmitted to the cloud.The data is then applied in the proposed mathematical model for the estimation of Estimated Time of Arrival(ETA).In terms of vehicle classifications and counts,we deployed CCTV cameras,and the recorded videos are analyzed by using You Only Look Once(YOLO)algorithm.The simulation and measurement results of SUT Smart Transit and MoreSai@SUT before the covid-19 pandemic are discussed.Contrary to the existing researches,the proposed system is implemented in the real environment.The final results unveil the attractiveness and satisfaction of users.Also,due to the proposed system,the CO_(2) gas gets reduced when Multi-Mode Transportation is implemented practically in the campus. 展开更多
关键词 Smart transit intelligent transportation system(ITS) dedicated short range communication(DSRC) vehicle to network(v2N) vehicle to everything(v2X) electric vehicle(Ev) you only look once(YOLO)
下载PDF
Non-Intrusive Load Identification Model Based on 3D Spatial Feature and Convolutional Neural Network 被引量:1
12
作者 Jiangyong Liu Ning Liu +3 位作者 Huina Song Ximeng Liu Xingen Sun Dake Zhang 《Energy and Power Engineering》 2021年第4期30-40,共11页
<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I t... <div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div> 展开更多
关键词 Non-Intrusive Load Identification Binary v-I Trajectory Feature Three-Dimensional Feature Convolutional Neural network Deep Learning
下载PDF
Lifetime Optimization via Network Sectoring in Cooperative Wireless Sensor Networks 被引量:1
13
作者 Hadi Jamali Rad Bahman Abolhassani Mohammad Abdizadeh 《Wireless Sensor Network》 2010年第12期905-909,共5页
Employing cooperative communication in multihop wireless sensor networks provides the network with significant energy efficiency. However, the lifetime of such a network is directly dependant upon the lifetime of each... Employing cooperative communication in multihop wireless sensor networks provides the network with significant energy efficiency. However, the lifetime of such a network is directly dependant upon the lifetime of each of its individual sections (or clusters). Ignoring the fact that those sections close to sink have to forward more data (their own data plus the data received from the previous sections) and hence die sooner with considering equal section sizes, leads to a sub-optimal lifetime. In this paper, we optimize the section sizes of a multihop cooperative WSN so that it maximizes the network lifetime. Simulation results demonstrate a significant lifetime enhancement for the proposed optimal sectoring. 展开更多
关键词 Wireless Sensor network (WSN) COOPERATIvE COMMUNICATIONS vIRTUAL Multi-Input-Multi-Output (v-MIMO) Energy Efficiency
下载PDF
V-fold交叉验证和BP神经网络在信用评价中的应用 被引量:3
14
作者 杨力 童艳梅 +2 位作者 阮守武 刘晓伟 吴德胜 《运筹与管理》 CSCD 2005年第4期140-143,共4页
研究关于公司神经网络信用评估问题的现状,提出一套甄选方法准则,用于建立适合于我国企业的信用评分指标体系;然后依据该指标体系建立了基于BP回归神经网络的信用评估模型;采用V-fold交叉验证技术,利用样本公司实际指标数据对该模型的... 研究关于公司神经网络信用评估问题的现状,提出一套甄选方法准则,用于建立适合于我国企业的信用评分指标体系;然后依据该指标体系建立了基于BP回归神经网络的信用评估模型;采用V-fold交叉验证技术,利用样本公司实际指标数据对该模型的评分效果进行了实证研究。 展开更多
关键词 信用评分 BP神经网络 v—fold交叉验证技术 实证研究
下载PDF
分布式电源对380V低压配电网熔断器保护的影响研究 被引量:5
15
作者 王文焕 杨国生 +4 位作者 王德林 周泽昕 刘宇 李伟 张志 《电网技术》 EI CSCD 北大核心 2015年第7期2029-2033,共5页
分布式电源(distributed generation,DG)的接入改变了380V低压配电网的拓扑结构,将影响380 V低压熔断器的的可靠性。为此,在PSCAD/EMTDC平台上建立系统数字仿真模型,研究了逆变器型DG接入、旋转电机型DG及逆变器和旋转电机型DG混合接入... 分布式电源(distributed generation,DG)的接入改变了380V低压配电网的拓扑结构,将影响380 V低压熔断器的的可靠性。为此,在PSCAD/EMTDC平台上建立系统数字仿真模型,研究了逆变器型DG接入、旋转电机型DG及逆变器和旋转电机型DG混合接入3种接入方式下的380 V低压配电网故障特性。研究了3种方式下,DG接入容量和接入位置对380 V低压配电网的障特性的影响,并根据系统故障特性和熔断器熔断特性,分析DG接入对380 V低压配电网熔断器保护动作特性的影响。结果表明,DG接入会引起熔断器拒动或误动,危及低压配电网的供电可靠性。最后提出将DG的控制策略和熔丝的反时限特性相配合的措施,保证在发生反向故障时能够有选择性地切除故障。 展开更多
关键词 分布式电源 熔断器保护 380 v低压配电网 逆变器 旋转电机
下载PDF
基于P-V曲线的风电场接入系统稳态分析 被引量:66
16
作者 张义斌 王伟胜 戴慧珠 《电网技术》 EI CSCD 北大核心 2004年第23期61-65,共5页
提出了基于P-V曲线的风电场接入系统稳态分析方法以及两个风电场同时接入系统的分析方法,该方法能够提供电压偏移量、电压波动范围等信息。文章还分析了风电场接入系统的电压要求及风电场运行对区域电网网损的影响,由仿真结果可见,风电... 提出了基于P-V曲线的风电场接入系统稳态分析方法以及两个风电场同时接入系统的分析方法,该方法能够提供电压偏移量、电压波动范围等信息。文章还分析了风电场接入系统的电压要求及风电场运行对区域电网网损的影响,由仿真结果可见,风电场接入系统的最低电压应高于系统检修时的最低电压,而且风电场的接入有利于减少系统的网损。 展开更多
关键词 风电场 稳态分析 网损 电压偏移 电压波动 P-v曲线 区域电网 接入系统 低电压 仿真结果
下载PDF
V正交基网络 被引量:2
17
作者 熊刚强 齐东旭 《计算机科学》 CSCD 北大核心 2011年第10期211-214,共4页
为了改进BP网络的收敛速度与连续正交基网络无法逼近非连续函数的问题,构造了一类基于V正交基的前馈神经网络(简称V正交基网络),并研究其收敛性条件与伪逆规则。由于V系统是L2([0,1])上的一类完备的正交函数系,且Fourier-V级数有较快的... 为了改进BP网络的收敛速度与连续正交基网络无法逼近非连续函数的问题,构造了一类基于V正交基的前馈神经网络(简称V正交基网络),并研究其收敛性条件与伪逆规则。由于V系统是L2([0,1])上的一类完备的正交函数系,且Fourier-V级数有较快的收敛速度,因此,V正交基网络有较快的收敛速度,且能有效地逼近一类强间断的一元函数。最后,通过仿真实验证明,V正交基网络的收敛速度明显优于传统的BP网络、小波网络与Legendre网络,特别是逼近一类间断点在二进制有理数处的函数时,其优势更加明显。 展开更多
关键词 v系统 BP神经网络 小波神经网络 Legendre网络 函数逼近
下载PDF
宽板V形自由弯曲智能化控制过程材料参数识别及最优工艺参数预测 被引量:12
18
作者 官英平 赵军 苏春建 《机械工程学报》 EI CAS CSCD 北大核心 2005年第4期199-202,共4页
在板材成形智能化控制的四个基本要素中,材料性能参数的实时识别及最优工艺参数的预测是最复杂的两个技术关键。识别和预测精度的高低,将直接影响到智能化控制成功与否。以宽板V形自由弯曲智能化控制为研究对象,采用基于LM算法的前馈神... 在板材成形智能化控制的四个基本要素中,材料性能参数的实时识别及最优工艺参数的预测是最复杂的两个技术关键。识别和预测精度的高低,将直接影响到智能化控制成功与否。以宽板V形自由弯曲智能化控制为研究对象,采用基于LM算法的前馈神经网络模型,通过实时监测量来实时识别所需的材料性能参数,并预测最优的工艺参数,取得了令人满意的收敛精度。在样本数据范围内,当模型的收敛精度为0.1%时,识别和预测的泛化精度均在5%以内。 展开更多
关键词 v形自由弯曲 智能化 神经网络 识别 预测
下载PDF
“被+V”结构现象分析 被引量:1
19
作者 贺敬华 姚海平 颜力涛 《大庆师范学院学报》 2014年第5期76-80,共5页
随着新媒体的发展,出现了许多"被+V"的流行语,这种新结构并不是人们杜撰出来的,而是有它的语法和语义根源。通过比对"被"的原义和"被+V"新型组合的意义生成过程,论述"被+V"新组合的来源与其发... 随着新媒体的发展,出现了许多"被+V"的流行语,这种新结构并不是人们杜撰出来的,而是有它的语法和语义根源。通过比对"被"的原义和"被+V"新型组合的意义生成过程,论述"被+V"新组合的来源与其发展前景。 展开更多
关键词 现代汉语研究 “被+v”格式 网络语言 格式套
下载PDF
Hyper-V虚拟环境下高职院校计算机实验室网络设计研究 被引量:6
20
作者 宋金城 《软件》 2014年第11期124-125,共2页
针对传统模式下计算机实验环境存在的实验空间与时间的局限性、机房维护成本过高,通过使用Hyper-V服务器虚拟化技术高效运行虚拟机、不仅使计算机实验室信息服务平台在硬件层面具有高可用性,而且在网络层面也具有高可用性和灵活性,为计... 针对传统模式下计算机实验环境存在的实验空间与时间的局限性、机房维护成本过高,通过使用Hyper-V服务器虚拟化技术高效运行虚拟机、不仅使计算机实验室信息服务平台在硬件层面具有高可用性,而且在网络层面也具有高可用性和灵活性,为计算机实验室提供更好的服务打下了坚实的基础[1]。 展开更多
关键词 虚拟化 HYPER-v 服务器 网络
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部