Based on Zak's stress function, the eigen-equation of stress singularity ofbi-materials with a V-notch was obtained. A new definition of stress intensity factor for a perpendicular interfacial V-notch of bi-material ...Based on Zak's stress function, the eigen-equation of stress singularity ofbi-materials with a V-notch was obtained. A new definition of stress intensity factor for a perpendicular interfacial V-notch of bi-material was put forward. The effects of shear modulus and Poisson's ratio of the matrix material and attaching material on eigen-values were analyzed. A generalized expression for calculating/(i of the perpendicular V-notch of bi-materials was obtained by means of stress extrapolation. Effects of notch depth, notch angle and Poisson's ratio of materials on the singular stress field near the tip of the V-notch were analyzed systematically with numerical simulations. As an example, a finite plate with double edge notches under uniaxial uniform tension was calculated by the method presented and the influence of the notch angle and Poisson's ratio on the stress singularity near the tip of notch was obtained.展开更多
The higher order asymptotic fields at the tip of a sharp V-notchin a power-hardening material for plane strain problem of Mode I arederived. The order hierarchy in powers of r for various hardeningexponents n and notc...The higher order asymptotic fields at the tip of a sharp V-notchin a power-hardening material for plane strain problem of Mode I arederived. The order hierarchy in powers of r for various hardeningexponents n and notch angles β is obtained. The angulardistributions of stress for several cases are plotted. Theself-similarity behavior between the higher order terms is noticed.It is found that the terms with higher Order can be neglected for theV-notch angle β>45°.展开更多
基金supported by the Ministry of Education of China(No.208152)Gansu Natural Science Foundation(No.3ZS061-A52-47).
文摘Based on Zak's stress function, the eigen-equation of stress singularity ofbi-materials with a V-notch was obtained. A new definition of stress intensity factor for a perpendicular interfacial V-notch of bi-material was put forward. The effects of shear modulus and Poisson's ratio of the matrix material and attaching material on eigen-values were analyzed. A generalized expression for calculating/(i of the perpendicular V-notch of bi-materials was obtained by means of stress extrapolation. Effects of notch depth, notch angle and Poisson's ratio of materials on the singular stress field near the tip of the V-notch were analyzed systematically with numerical simulations. As an example, a finite plate with double edge notches under uniaxial uniform tension was calculated by the method presented and the influence of the notch angle and Poisson's ratio on the stress singularity near the tip of notch was obtained.
基金the National Natural Science Foundation of China (Nos.10132010 and 10072033).
文摘The higher order asymptotic fields at the tip of a sharp V-notchin a power-hardening material for plane strain problem of Mode I arederived. The order hierarchy in powers of r for various hardeningexponents n and notch angles β is obtained. The angulardistributions of stress for several cases are plotted. Theself-similarity behavior between the higher order terms is noticed.It is found that the terms with higher Order can be neglected for theV-notch angle β>45°.