We report a passive mode-locked fiber laser that can realize single-wavelength tuning and multi-wavelength spacing tuning simultaneously.The tuning range is from 1528 nm–1560 nm,and up to three bands of soliton state...We report a passive mode-locked fiber laser that can realize single-wavelength tuning and multi-wavelength spacing tuning simultaneously.The tuning range is from 1528 nm–1560 nm,and up to three bands of soliton states can be output at the same time.These results are confirmed by a nonlinear Schrodinger equation model based on the split-step Fourier method.In addition,we reveal a way to transform the multi-wavelength soliton state into the Q-switched mode-locked state,which is period doubling.These results will promote the development of optical communication,optical sensing and multi-signal pulse emission.展开更多
The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the gen...The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.展开更多
For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging ...For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.展开更多
Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the...Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.展开更多
We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave ...We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.展开更多
Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through A...Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through Andreev reflection using an interferometer-based superconductor hybrid junction.The interferometer comprises a ring-shaped structure formed by topological kink states in the a-T3 lattice via carefully designed electrostatic potentials.Our results demonstrate the feasibility of achieving a fully polarized VSC in this device without contamination from cotunneling electrons sharing the same valley as the incident electron.Furthermore,we show that control over the fully polarized VSC can be achieved by applying a nonlocal gate voltage or modifying the global parameter a.The former alters the dynamic phase of electrons while the latter provides an a-dependent Berry phase,both directly influencing quantum interference and thereby affecting performance in terms of generating and manipulating VSC,crucial for advancements in valleytronics.展开更多
Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimen...Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimensional phase change memory,stands out as one of the most promising candidates.The Optane with cross-point architecture is constructed through layering a storage element and a selector known as the ovonic threshold switch(OTS).The OTS device,which employs chalcogenide film,has thereby gathered increased attention in recent years.In this paper,we begin by providing a brief introduction to the discovery process of the OTS phenomenon.Subsequently,we summarize the key elec-trical parameters of OTS devices and delve into recent explorations of OTS materials,which are categorized as Se-based,Te-based,and S-based material systems.Furthermore,we discuss various models for the OTS switching mechanism,including field-induced nucleation model,as well as several carrier injection models.Additionally,we review the progress and innovations in OTS mechanism research.Finally,we highlight the successful application of OTS devices in three-dimensional high-density memory and offer insights into their promising performance and extensive prospects in emerging applications,such as self-selecting memory and neuromorphic computing.展开更多
Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe...Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.展开更多
Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra...Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.展开更多
On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the est...On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the estimation error cannot be guaranteed to converge to zero.In addition,the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants.In this paper,we aim at overcoming such difficulties and filling in the gaps,by proposing a novel adaptive ETS(AETS)to design an event-based H_(∞)switched proportional-integral(PI)state estimator.A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator.The relationship among the average dwell time,the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H_(∞)performance level.It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals.Finally,the validity of the proposed theoretical results is verified through two illustrative examples.展开更多
Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as re...Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as reduction in the lifespan of equipment due to frequent switching and interruption,delay,and stoppage of services may occur.Therefore,applying a machine learning(ML)method,which is possible to automatically judge and classify network-related service anomaly,and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when there are problems such as transmission errors,is required.In this paper,we propose an intelligent packet switching method based on the ML method of classification,which is one of the supervised learning methods,that presents the risk level of abnormal multi-stream occurring in broadcasting gateway equipment based on data.Furthermore,we subdivide the risk levels obtained from classification techniques into probabilities and then derive vectorized representative values for each attribute value of the collected input data and continuously update them.The obtained reference vector value is used for switching judgment through the cosine similarity value between input data obtained when a dangerous situation occurs.In the broadcasting gateway equipment to which the proposed method is applied,it is possible to perform more stable and smarter switching than before by solving problems of reliability and broadcasting accidents of the equipment and can maintain stable video streaming as well.展开更多
BACKGROUND Both tenofovir alafenamide(TAF)and tenofovir disoproxil fumarate(TDF)are the first-line treatments for chronic hepatitis B(CHB).We have showed switching from TDF to TAF for 96 weeks resulted in further alan...BACKGROUND Both tenofovir alafenamide(TAF)and tenofovir disoproxil fumarate(TDF)are the first-line treatments for chronic hepatitis B(CHB).We have showed switching from TDF to TAF for 96 weeks resulted in further alanine aminotransferase(ALT)improvement,but data remain lacking on the long-term benefits of TDF switching to TAF on hepatic fibrosis.AIM To assess the benefits of TDF switching to TAF for 3 years on ALT,aspartate aminotransferase(AST),and hepatic fibrosis improvement in patients with CHB.METHODS A single center retrospective study on 53 patients with CHB who were initially treated with TDF,then switched to TAF to determine dynamic patterns of ALT,AST,AST to platelet ratio index(APRI),fibrosis-4(FIB-4)scores,and shear wave elastography(SWE)reading improvement at switching week 144,and the associated factors.RESULTS The mean age was 55(28-80);45.3%,males;15.1%,clinical cirrhosis;mean baseline ALT,24.8;AST,25.7 U/L;APRI,0.37;and FIB-4,1.66.After 144 weeks TDF switching to TAF,mean ALT and AST were reduced to 19.7 and 21,respectively.From baseline to switching week 144,the rates of ALT and AST<35(male)/25(female)and<30(male)/19(female)were persistently increased;hepatic fibrosis was also improved by APRI<0.5,from 79.2%to 96.2%;FIB-4<1.45,from 52.8%to 58.5%,respectively;mean APRI was reduced to 0.27;FIB-4,to 1.38;and mean SWE reading,from 7.05 to 6.30 kPa after a mean of 109 weeks switching.The renal function was stable and the frequency of patients with glomerular filtration rate>60 mL/min was increased from 86.5%at baseline to 88.2%at switching week 144.CONCLUSION Our data confirmed that switching from TDF to TAF for 3 years results in not only persistent ALT/AST improvement,but also hepatic fibrosis improvement by APRI,FIB-4 scores,as well as SWE reading,the important clinical benefits of long-term hepatitis B virus antiviral treatment with TAF.展开更多
With the increasing emphasis on energy conservation,emission reduction and environmental protection,the application prospect of SiC power devices is becoming more and more broad.In the high frequency application of Si...With the increasing emphasis on energy conservation,emission reduction and environmental protection,the application prospect of SiC power devices is becoming more and more broad.In the high frequency application of SiC MOSFET,the change rate of voltage and current in the turn-on and turn-off process increases with the increase of switching frequency.Also,the current and voltage spike oscillation phenomenon is gradually intensified due to the influence of circuit stray parameters.Based on the analysis of SiC MOSFET characteristics,the paper discusses the design requirements and design principles of SiC MOSFET drive circuit.Then,taking the SiC module C2M0080120D of Cree Company as an example,a driver circuit design is realized through the ACPL-355JC optocoupler driver module of Broadcom Company.The circuit not only has the characteristics of fast transmission delay and excellent performance,but also has the functions of overload and short circuit protection.The driving circuit is verified by LTspice simulation software,and the switching characteristics of SiC MOSFET under different working conditions are studied in depth.The experimental results show that the driving circuit can improve the switching time of SiC MOSFET and effectively solve the problem of current and voltage spike oscillation,which lays a foundation for the practical application of SiC MOSFET in the future.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR20A050001)the National Natural Science Foundation of China(Grant Nos.12261131495 and 12275240)the Scientific Research and De-veloped Fund of Zhejiang A&F University(Grant No.2021FR0009).
文摘We report a passive mode-locked fiber laser that can realize single-wavelength tuning and multi-wavelength spacing tuning simultaneously.The tuning range is from 1528 nm–1560 nm,and up to three bands of soliton states can be output at the same time.These results are confirmed by a nonlinear Schrodinger equation model based on the split-step Fourier method.In addition,we reveal a way to transform the multi-wavelength soliton state into the Q-switched mode-locked state,which is period doubling.These results will promote the development of optical communication,optical sensing and multi-signal pulse emission.
基金Supported by National Natural Science Foundation of China (Grant No.52005441)Young Elite Scientist Sponsorship Program by CAST of China (Grant No.2022-2024QNRC001)+4 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ21E050017)Zhejiang Provincial“Pioneer”and“Leading Goose”R&D Program of China (Grant Nos.2022C01122,2022C01132)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202316)Fundamental Research Funds for the Provincial Universities of Zhejiang of China (Grant No.RF-A2023007)Research Project of ZJUT of China (Grant No.GYY-ZH-2023075)。
文摘The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.
基金funded by Tsinghua University-Weichai Power Intelligent Manufacturing Joint Research Institute (WCDL-GH-2022-0131)。
文摘For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.
基金This work is supported by the Macao Science and Technology Development Fund(FDCT)under Grant 0041/2022/A1by the Research Committee of University of Macao under Grant MYRG2022-00004-IME.
文摘Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.
基金Nanjing University of Posts and Telecommunications Foundation(Grant Nos.JUH219002 and JUH219007)Key Laboratory of Functional Crystals and Laser Technology,TIPC,CAS Foundation(Grant No.FCLT 202201)。
文摘We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.
基金supported by the National Natural Science Foundation of China(Grant No.12174051).
文摘Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through Andreev reflection using an interferometer-based superconductor hybrid junction.The interferometer comprises a ring-shaped structure formed by topological kink states in the a-T3 lattice via carefully designed electrostatic potentials.Our results demonstrate the feasibility of achieving a fully polarized VSC in this device without contamination from cotunneling electrons sharing the same valley as the incident electron.Furthermore,we show that control over the fully polarized VSC can be achieved by applying a nonlocal gate voltage or modifying the global parameter a.The former alters the dynamic phase of electrons while the latter provides an a-dependent Berry phase,both directly influencing quantum interference and thereby affecting performance in terms of generating and manipulating VSC,crucial for advancements in valleytronics.
基金M.Zhu acknowledges support by the National Outstanding Youth Program(62322411)the Hundred Talents Program(Chinese Academy of Sciences)+1 种基金the Shanghai Rising-Star Program(21QA1410800)The financial support was provided by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB44010200).
文摘Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimensional phase change memory,stands out as one of the most promising candidates.The Optane with cross-point architecture is constructed through layering a storage element and a selector known as the ovonic threshold switch(OTS).The OTS device,which employs chalcogenide film,has thereby gathered increased attention in recent years.In this paper,we begin by providing a brief introduction to the discovery process of the OTS phenomenon.Subsequently,we summarize the key elec-trical parameters of OTS devices and delve into recent explorations of OTS materials,which are categorized as Se-based,Te-based,and S-based material systems.Furthermore,we discuss various models for the OTS switching mechanism,including field-induced nucleation model,as well as several carrier injection models.Additionally,we review the progress and innovations in OTS mechanism research.Finally,we highlight the successful application of OTS devices in three-dimensional high-density memory and offer insights into their promising performance and extensive prospects in emerging applications,such as self-selecting memory and neuromorphic computing.
基金National Key R&D Program of China(2021YFA0716304)Shanghai Science and Technology Programs(22511100300,23DZ2201500)。
文摘Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.
基金financially supported by the National Natural Science Foundation of China (Grant No.51802025)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2020JQ-384)。
文摘Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.
基金supported in part by the National Natural Science Foundation of China under Grants 62103352supported in part by Hebei Natural Science Foundation,China under Grant F2023203056the 8th batch of post-doctoral Innovative Talent Support Program BX20230150.
文摘On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the estimation error cannot be guaranteed to converge to zero.In addition,the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants.In this paper,we aim at overcoming such difficulties and filling in the gaps,by proposing a novel adaptive ETS(AETS)to design an event-based H_(∞)switched proportional-integral(PI)state estimator.A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator.The relationship among the average dwell time,the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H_(∞)performance level.It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals.Finally,the validity of the proposed theoretical results is verified through two illustrative examples.
基金This work was supported by a research grant from Seoul Women’s University(2023-0183).
文摘Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as reduction in the lifespan of equipment due to frequent switching and interruption,delay,and stoppage of services may occur.Therefore,applying a machine learning(ML)method,which is possible to automatically judge and classify network-related service anomaly,and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when there are problems such as transmission errors,is required.In this paper,we propose an intelligent packet switching method based on the ML method of classification,which is one of the supervised learning methods,that presents the risk level of abnormal multi-stream occurring in broadcasting gateway equipment based on data.Furthermore,we subdivide the risk levels obtained from classification techniques into probabilities and then derive vectorized representative values for each attribute value of the collected input data and continuously update them.The obtained reference vector value is used for switching judgment through the cosine similarity value between input data obtained when a dangerous situation occurs.In the broadcasting gateway equipment to which the proposed method is applied,it is possible to perform more stable and smarter switching than before by solving problems of reliability and broadcasting accidents of the equipment and can maintain stable video streaming as well.
文摘BACKGROUND Both tenofovir alafenamide(TAF)and tenofovir disoproxil fumarate(TDF)are the first-line treatments for chronic hepatitis B(CHB).We have showed switching from TDF to TAF for 96 weeks resulted in further alanine aminotransferase(ALT)improvement,but data remain lacking on the long-term benefits of TDF switching to TAF on hepatic fibrosis.AIM To assess the benefits of TDF switching to TAF for 3 years on ALT,aspartate aminotransferase(AST),and hepatic fibrosis improvement in patients with CHB.METHODS A single center retrospective study on 53 patients with CHB who were initially treated with TDF,then switched to TAF to determine dynamic patterns of ALT,AST,AST to platelet ratio index(APRI),fibrosis-4(FIB-4)scores,and shear wave elastography(SWE)reading improvement at switching week 144,and the associated factors.RESULTS The mean age was 55(28-80);45.3%,males;15.1%,clinical cirrhosis;mean baseline ALT,24.8;AST,25.7 U/L;APRI,0.37;and FIB-4,1.66.After 144 weeks TDF switching to TAF,mean ALT and AST were reduced to 19.7 and 21,respectively.From baseline to switching week 144,the rates of ALT and AST<35(male)/25(female)and<30(male)/19(female)were persistently increased;hepatic fibrosis was also improved by APRI<0.5,from 79.2%to 96.2%;FIB-4<1.45,from 52.8%to 58.5%,respectively;mean APRI was reduced to 0.27;FIB-4,to 1.38;and mean SWE reading,from 7.05 to 6.30 kPa after a mean of 109 weeks switching.The renal function was stable and the frequency of patients with glomerular filtration rate>60 mL/min was increased from 86.5%at baseline to 88.2%at switching week 144.CONCLUSION Our data confirmed that switching from TDF to TAF for 3 years results in not only persistent ALT/AST improvement,but also hepatic fibrosis improvement by APRI,FIB-4 scores,as well as SWE reading,the important clinical benefits of long-term hepatitis B virus antiviral treatment with TAF.
基金the phased achievements of the postgraduate practice innovation project(SJCX22_1479)in Jiangsu Province.
文摘With the increasing emphasis on energy conservation,emission reduction and environmental protection,the application prospect of SiC power devices is becoming more and more broad.In the high frequency application of SiC MOSFET,the change rate of voltage and current in the turn-on and turn-off process increases with the increase of switching frequency.Also,the current and voltage spike oscillation phenomenon is gradually intensified due to the influence of circuit stray parameters.Based on the analysis of SiC MOSFET characteristics,the paper discusses the design requirements and design principles of SiC MOSFET drive circuit.Then,taking the SiC module C2M0080120D of Cree Company as an example,a driver circuit design is realized through the ACPL-355JC optocoupler driver module of Broadcom Company.The circuit not only has the characteristics of fast transmission delay and excellent performance,but also has the functions of overload and short circuit protection.The driving circuit is verified by LTspice simulation software,and the switching characteristics of SiC MOSFET under different working conditions are studied in depth.The experimental results show that the driving circuit can improve the switching time of SiC MOSFET and effectively solve the problem of current and voltage spike oscillation,which lays a foundation for the practical application of SiC MOSFET in the future.