By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities ...By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.展开更多
Many database applications currently deal with objects in a metric space.Examples of such objects include unstructured multimedia objects and points of interest(POIs)in a road network.The M-tree is a dynamic index str...Many database applications currently deal with objects in a metric space.Examples of such objects include unstructured multimedia objects and points of interest(POIs)in a road network.The M-tree is a dynamic index structure that facilitates an efficient search for objects in a metric space.Studies have been conducted on the bulk loading of large datasets in an M-tree.However,because previous algorithms involve excessive distance computations and disk accesses,they perform poorly in terms of their index construction and search capability.This study proposes two efficient M-tree bulk loading algorithms.Our algorithms minimize the number of distance computations and disk accesses using FastMap and a space-filling curve,thereby significantly improving the index construction and search performance.Our second algorithm is an extension of the first,and it incorporates a partitioning clustering technique and flexible node architecture to further improve the search performance.Through the use of various synthetic and real-world datasets,the experimental results demonstrated that our algorithms improved the index construction performance by up to three orders of magnitude and the search performance by up to 20.3 times over the previous algorithm.展开更多
An analytical method was derived for the thermal consolidation of layered, saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influ...An analytical method was derived for the thermal consolidation of layered, saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influences of thermo-osmosis effect and thermal filtration effect were introduced. Solutions in Laplace transform space were first obtained and then numerically inverted. The responses of a double-layered porous space subjected to exponential decaying thermal loading were studied. The influences of the differences between the properties of the two layers (e.g., the coefficient of thermal consolidation, elastic modulus) on thermal consolidation were discussed. The studies show that the coupling effects of displacement and stress fields on temperature field can be completely neglected, however, the the thermal responses. effect has an obvious influence on展开更多
Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias t...Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias tunnels with small clear distance was analyzed along with the load characteristics.The results show that:1) The failure process of surrounding rock of shallow-bias tunnels with small clear distance consists of structural and stratum deformation induced by tunnel excavation; Microfracture surfaces are formed in the tunnel surrounding rock and extend deep into the rock mass in a larger density; Tensile cracking occurs in shallow position on the deep-buried side,with shear slip in deep rock mass.In the meantime,rapid deformation and slip take place on the shallow-buried side until the surrounding rocks totally collapse.The production and development of micro-fracture surfaces in the tunnel surrounding rock and tensile cracking in the shallow position on the deep-buried side represent the key stages of failure.2) The final failure mode is featured by an inverted conical fracture with tunnel arch as its top and the slope at tunnel entrance slope as its bottom.The range of failure on the deep-buried side is significantly larger than that on the shallow-buried side.Such difference becomes more prominent with the increasing bias angle.What distinguishes it from the "linear fracture surface" model is that the model proposed has a larger fracture angle on the two sides.Moreover,the bottom of the fracture is located at the springing line of tunnel arch.3) The total vertical load increases with bias angle.Compared with the existing methods,the unsymmetrical loading effect in measurement is more prominent.At last,countermeasures are proposed according to the analysis results: during engineering process,1) The surrounding rock mass on the deep-buried side should be reinforced apart from the tunnel surrounding rock for shallow-buried tunnels with small clear distance; moreover,the scope of consolidation should go beyond the midline of tunnel(along the direction of the top of slope) by 4 excavation spans of single tunnel.2) It is necessary to modify the load value of shallow-bias tunnels with small clear distance.展开更多
The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been ...The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.展开更多
By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Base...By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Based on the relative relation of wave velocities of the half-space and the beam, four cases with the combination of different parameters of the half-space and the beam, the system of soft beam and hard half-space, the system of sub-soft beam and hard half- space, the system of sub-hard beam and soft half-space, and the system of hard beam and soft half-space are considered. The critical velocities of the moving load are studied using dispersion curves. It is found that critical velocities of the moving load on the Timoshenko beam depend on the relative relation of wave velocities of the half-space and the beam. The Rayleigh wave velocity in the half-space is always a critical velocity and the response of the system will be infinite when the load velocity reaches it. For the system of soft beam and hard half-space, wave velocities of the beam are also critical velocities. Besides the shear wave velocity of the beam, there is an additional minimum critical velocity for the system of sub-soft beam and hard half-space. While for systems of (sub-) hard beams and soft half-space, wave velocities of the beam are no longer critical ones. Comparison with the Euler-Bernoulli beam shows that the critical velocities and response of the two types of beams are much different for the system of (sub-) soft beam and hard half-space but are similar to each other for the system of (sub-) hard beam and soft half space. The largest displacement of the beam is almost at the location of the load and the displacement along the beam is almost symmetrical if the load velocity is smaller than the minimum critical velocity (the shear wave velocity of the beam for the system of soft beam and hard half-space). The largest displacement of the beam shifts behind the load and the asymmetry of the displacement along the beam increases with the increase of the load velocity due to the damping and wave racliation. The displacement of the beam at the front of the load is very small if the load velocity is larger than the largest wave velocity of the beam and the half space. The results of the present study provide attractive theoretical and practical references for the analysis of ground vibration induced by the high-speed train.展开更多
Seismic method is usually used for elastic parametric estimation. This is why this method presents dynamic parameters of Earth. Frequency seismic range changes greatly from geodynamic modelling time. Now we have oppor...Seismic method is usually used for elastic parametric estimation. This is why this method presents dynamic parameters of Earth. Frequency seismic range changes greatly from geodynamic modelling time. Now we have opportunity to use geodesy result for some years for elastic parameters estimation. Static solution from elastic theory may be used for the interpretation of long term results. It presents static elastic parameter. The inverse problem for different types of vertical surface loading on one year period is calculated. Two cases of loading with maximal and minimal area are presented. Results are determined by space geodesy and leveling methods. Current relation between atmospheric pressure and vertical displacements was estimated at the center of Siberian Anti Cyclone with size varied from 2000 km to 3000 kin. Pressure-displacement coefficients (PDC) can be achieved by three years obser- vation (0.997 mm/mbar for NVSK GPS station). It is used for elastic module study of geology medium with maximum thickness up to 600 km. In the context of elastic model, the modulus of rigidity is estimated to be 113 GPa. Vast expanse of anti-cyclone may relate with rheology of crust and upper mantle. Smaller size of surface loading - local loading is seasonal variation of water reservoir. Annual vertical changes were obtained by leveling near the dam of the reservoir. PDC ratio was 1.15 mm/bar for these places. In elastic theory, the Young modulus E = 80 GPa (Poisson ratio = 0.25, the modulus of rigidity - 32 GPa) was calculated by sixteen years of leveling measurements. This result can effectively be represented for upper crust. Our results were checked by solution for coseismic displacement of Chyia- Altai earthquake (Sep. 27, 2003, M = 7.3). Coseismic results calculated by static modules agree with experimental coseismic GPS data at 10% level.展开更多
This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stre...This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stress t(rz) are carried out. It is found that the second order effect is to reduce z-direction displacement and to decrease t(rz)inside the circle but to increase its value outside the circle.展开更多
This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear ...This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear load, is presented. The method of integral transform is employed to determine the solutions.展开更多
Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of...Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.展开更多
The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surfa...The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surface loads. Two particular cases considered are: two-dimensional normal strip loading and axisymmetric normal disc loading. It is found that a negative Poisson’s ratio makes the Mandel-Cryer effect more prominent. It also results in an increase in the magnitude of the surface settlement.展开更多
Dependence among random input variables affects importantly the results of probabilistic load flow(PLF),system economic operation,and system security.To solve this problem,the main objectiveness of the paper is to ana...Dependence among random input variables affects importantly the results of probabilistic load flow(PLF),system economic operation,and system security.To solve this problem,the main objectiveness of the paper is to analyze the performance of several schemes for simulating correlated variables combined with the point estimate method(PEM).Unlike the existing works that considering one single scheme combined with Monte Carlo simulation(MCS) or PEM,by neglecting the correlation among random input variables,four schemes were presented for disposing the dependence of correlated random variables,including Nataf transformation /polynomial normal transformation(PINT) combined with orthogonal transformation(OT) / elementary transformation(ET).Combining with the 2m+1 approach of PEM,a space transformation-based formulation was proposed and adopted for solving the PLF.The proposed approach is applied in the modified IEEE 30-bus system while considering correlated wind generations and load demands.Numerical results show the effectiveness of the proposed approach compared with those obtained from the MCS.Results also show that the scheme of combining Nataf transformation and ET with PEM provides the best performance.展开更多
The derivation of a diagonally loaded sample-matrix inversion (LSMI) algorithm on the busis of inverse matrix recursion (i.e.LSMI-IMR algorithm) is conducted by reconstructing the recursive formulation of covarian...The derivation of a diagonally loaded sample-matrix inversion (LSMI) algorithm on the busis of inverse matrix recursion (i.e.LSMI-IMR algorithm) is conducted by reconstructing the recursive formulation of covariance matrix. For the new algorithm, diagonal loading is by setting initial inverse matrix without any addition of computation. In addition, a corresponding improved recursive algorithm is presented, which is low computational complexity. This eliminates the complex multiplications of the scalar coefficient and updating matrix, resulting in significant computational savings. Simulations show that the LSMI-IMR algorithm is valid.展开更多
Based upon the diagonal loading technique and the structure of the space-time adaptive processors, a novel anti-jamming method of satellite navigation is proposed. According to matrix in- verse theorem, the range of t...Based upon the diagonal loading technique and the structure of the space-time adaptive processors, a novel anti-jamming method of satellite navigation is proposed. According to matrix in- verse theorem, the range of the diagonal loading values for space-time adaptive wideband signal pro- cessing structure is deduced, and the optimum equation of diagonal loading beam forming algorithm of space-time structure is obtained. Then, by the analysis of two-dimensional oriented vector in di- rection of the perturbation interference, the wideband interference covariance matrix obtained in the weights training period is modified. Finally, the optimum weight of multi-linear constrained space- time adaptive beam-forming alogrithm is derived for anti-interference filter processing. The new method effectively widens the null steering beams tion results prove the robustness of the proposed when discrepancy happens. The computer simula- method.展开更多
To investigate the bilateral shear strength of rectangular frame column subjected to oblique horizontal load, we presented a simplified space truss-arch model developed from unilateral truss-arch model. Main parameter...To investigate the bilateral shear strength of rectangular frame column subjected to oblique horizontal load, we presented a simplified space truss-arch model developed from unilateral truss-arch model. Main parameters in the new model were the cross-sectional area, transverse reinforcement raito, axial load, and material strength of the column. The reduction coefficient of concrete sterength owing to the severe cracking of column was also introduced in the model. Finally, 14 specimens under oblique horizontal load were tested to verified the feasibility and applicability of the space truss-arch model.展开更多
Tubular section members made of steel are common in space trusses. There are several types of connections to attach these members. The most popular is the staking end-flattened connection. The reduced cost and the fas...Tubular section members made of steel are common in space trusses. There are several types of connections to attach these members. The most popular is the staking end-flattened connection. The reduced cost and the fast assemblage of the truss are among the advantages of the staking end-flattened connection on 3D trusses. However, such connections present disadvantages like eccentricities and stiffness weakening of the tubular members. In this work, based on computer simulations and experimental lab tests on prototypes, small changes on the staking end-flattened connections such as reinforcement and eccentricity correction are evaluated. The results show an increase of 68% for local collapse and 17% for global collapse in the truss load carrying capacity when the suggested changes proposed in this article are used for the staking end-flattened connections.展开更多
The present paper represents comparison of continuum shells and latticed shells with qualitative analysis. For shells, the mechanical characteristics in the two perpendicular directions are continuous and related to e...The present paper represents comparison of continuum shells and latticed shells with qualitative analysis. For shells, the mechanical characteristics in the two perpendicular directions are continuous and related to each other, and any change in thickness will result in change in stiffness in any direction. In latticed shells, members are discrete and stiffnesses in two mutually perpendicular directions are discontinuous and independent of each other. Therefore, sensitivity of geometrical imperfection for buckling of latticed shells should be different from that of continuum shells. The author proposes a shape optimization method for maximum buckling load of a latticed shell. A single layer latticed dome is taken as a numerical example, and the results show that the buckling load parameter for full area loading case increases 32.75% compared to that of its initial shape. Furthermore, the numerical example demonstrates that an optimum latticed shell with maximum buckling load, unlike an optimum continuum shell, may not be sensitive to its geometrical imperfection.展开更多
Subjective scales have different kinds of applicability in diverse fields.This study intends to implement a quantitative approach to determine the applicability of subjective scales in manual as-sembly work and evalua...Subjective scales have different kinds of applicability in diverse fields.This study intends to implement a quantitative approach to determine the applicability of subjective scales in manual as-sembly work and evaluate the cognitive load of assembly workers.A multi-scale research paradigm based on subjective evaluation method is proposed.Three typical task stages are extracted from the process of assembly work.The National Aeronautics and Space Administration Task Load Index(NASA-TLX)scale,PAAS scale and Workload Profile Index Ratings(WP)scale are selected for the design of 3×3 multi-factor mixed experiment.The power spectrum density(PSD)characteris-tics of electroencephalogram(EEG)are utilized to identify the difficulty levels of the three task sta-ges.The relevant indicators of scale applicability are assessed.The results show that in terms of sensitivity,NASA-TLX scale reaches the highest sensitivity(F=999.137,P=0<0.05).In terms of validity,NASA-TLX scale possesses the best concurrent validity(P=0.0255<0.05).In terms of diagnosticity,NASA-TLX scale based on 6 dimensions takes on the best diagnostic performance.In terms of subject acceptability,WP scale performs the worst.According to the analytic hierarchy process(AHP)model,the applicability scores of NASA-TLX scale,PAAS scale and WP scale are determined as 3,2.55 and 1.6714,respectively.Therefore,NASA-TLX scale is regarded as the most suitable subjective evaluation questionnaire for assembly workers,which is also an effective quantitative evaluation method for the cognitive load of assembly workers.展开更多
文摘By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.
基金the National Research Foundation of Korea(NRF,www.nrf.re.kr)grant funded by the Korean government(MSIT,www.msit.go.kr)(No.2018R1A2B6009188)(received by W.-K.Loh).
文摘Many database applications currently deal with objects in a metric space.Examples of such objects include unstructured multimedia objects and points of interest(POIs)in a road network.The M-tree is a dynamic index structure that facilitates an efficient search for objects in a metric space.Studies have been conducted on the bulk loading of large datasets in an M-tree.However,because previous algorithms involve excessive distance computations and disk accesses,they perform poorly in terms of their index construction and search capability.This study proposes two efficient M-tree bulk loading algorithms.Our algorithms minimize the number of distance computations and disk accesses using FastMap and a space-filling curve,thereby significantly improving the index construction and search performance.Our second algorithm is an extension of the first,and it incorporates a partitioning clustering technique and flexible node architecture to further improve the search performance.Through the use of various synthetic and real-world datasets,the experimental results demonstrated that our algorithms improved the index construction performance by up to three orders of magnitude and the search performance by up to 20.3 times over the previous algorithm.
基金Project supported by the National Natural Science Foundation of China (No.50578008)
文摘An analytical method was derived for the thermal consolidation of layered, saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influences of thermo-osmosis effect and thermal filtration effect were introduced. Solutions in Laplace transform space were first obtained and then numerically inverted. The responses of a double-layered porous space subjected to exponential decaying thermal loading were studied. The influences of the differences between the properties of the two layers (e.g., the coefficient of thermal consolidation, elastic modulus) on thermal consolidation were discussed. The studies show that the coupling effects of displacement and stress fields on temperature field can be completely neglected, however, the the thermal responses. effect has an obvious influence on
基金Project(51508575)supported by the National Natural Science Foundation of ChinaProject(2011CB013802)supported by the National Basic Research Program of China+1 种基金Projects(2014M560652,2016T90764)supported by the China Postdoctoral Science FoundationProject(2015RS4006)supported by the Innovative Talents of Science and Technology Plan of Hunan Province,China
文摘Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias tunnels with small clear distance was analyzed along with the load characteristics.The results show that:1) The failure process of surrounding rock of shallow-bias tunnels with small clear distance consists of structural and stratum deformation induced by tunnel excavation; Microfracture surfaces are formed in the tunnel surrounding rock and extend deep into the rock mass in a larger density; Tensile cracking occurs in shallow position on the deep-buried side,with shear slip in deep rock mass.In the meantime,rapid deformation and slip take place on the shallow-buried side until the surrounding rocks totally collapse.The production and development of micro-fracture surfaces in the tunnel surrounding rock and tensile cracking in the shallow position on the deep-buried side represent the key stages of failure.2) The final failure mode is featured by an inverted conical fracture with tunnel arch as its top and the slope at tunnel entrance slope as its bottom.The range of failure on the deep-buried side is significantly larger than that on the shallow-buried side.Such difference becomes more prominent with the increasing bias angle.What distinguishes it from the "linear fracture surface" model is that the model proposed has a larger fracture angle on the two sides.Moreover,the bottom of the fracture is located at the springing line of tunnel arch.3) The total vertical load increases with bias angle.Compared with the existing methods,the unsymmetrical loading effect in measurement is more prominent.At last,countermeasures are proposed according to the analysis results: during engineering process,1) The surrounding rock mass on the deep-buried side should be reinforced apart from the tunnel surrounding rock for shallow-buried tunnels with small clear distance; moreover,the scope of consolidation should go beyond the midline of tunnel(along the direction of the top of slope) by 4 excavation spans of single tunnel.2) It is necessary to modify the load value of shallow-bias tunnels with small clear distance.
基金Project supported by the National Natural Science Foundation of Shandong Province(No.ZR2013AL017)the National Natural Science Foundation of China(No.11272357)the Fundamental Research Funds for the Central Universities of China(No.11CX04049A)
文摘The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.
基金Project supported by the National Natural Science Foundation of China (No.50538010) the Doctoral Education of the State Education Ministry of China (No.20040335083) Encouragement Fund for Young Teachers in University of Ministry of Education.
文摘By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Based on the relative relation of wave velocities of the half-space and the beam, four cases with the combination of different parameters of the half-space and the beam, the system of soft beam and hard half-space, the system of sub-soft beam and hard half- space, the system of sub-hard beam and soft half-space, and the system of hard beam and soft half-space are considered. The critical velocities of the moving load are studied using dispersion curves. It is found that critical velocities of the moving load on the Timoshenko beam depend on the relative relation of wave velocities of the half-space and the beam. The Rayleigh wave velocity in the half-space is always a critical velocity and the response of the system will be infinite when the load velocity reaches it. For the system of soft beam and hard half-space, wave velocities of the beam are also critical velocities. Besides the shear wave velocity of the beam, there is an additional minimum critical velocity for the system of sub-soft beam and hard half-space. While for systems of (sub-) hard beams and soft half-space, wave velocities of the beam are no longer critical ones. Comparison with the Euler-Bernoulli beam shows that the critical velocities and response of the two types of beams are much different for the system of (sub-) soft beam and hard half-space but are similar to each other for the system of (sub-) hard beam and soft half space. The largest displacement of the beam is almost at the location of the load and the displacement along the beam is almost symmetrical if the load velocity is smaller than the minimum critical velocity (the shear wave velocity of the beam for the system of soft beam and hard half-space). The largest displacement of the beam shifts behind the load and the asymmetry of the displacement along the beam increases with the increase of the load velocity due to the damping and wave racliation. The displacement of the beam at the front of the load is very small if the load velocity is larger than the largest wave velocity of the beam and the half space. The results of the present study provide attractive theoretical and practical references for the analysis of ground vibration induced by the high-speed train.
文摘Seismic method is usually used for elastic parametric estimation. This is why this method presents dynamic parameters of Earth. Frequency seismic range changes greatly from geodynamic modelling time. Now we have opportunity to use geodesy result for some years for elastic parameters estimation. Static solution from elastic theory may be used for the interpretation of long term results. It presents static elastic parameter. The inverse problem for different types of vertical surface loading on one year period is calculated. Two cases of loading with maximal and minimal area are presented. Results are determined by space geodesy and leveling methods. Current relation between atmospheric pressure and vertical displacements was estimated at the center of Siberian Anti Cyclone with size varied from 2000 km to 3000 kin. Pressure-displacement coefficients (PDC) can be achieved by three years obser- vation (0.997 mm/mbar for NVSK GPS station). It is used for elastic module study of geology medium with maximum thickness up to 600 km. In the context of elastic model, the modulus of rigidity is estimated to be 113 GPa. Vast expanse of anti-cyclone may relate with rheology of crust and upper mantle. Smaller size of surface loading - local loading is seasonal variation of water reservoir. Annual vertical changes were obtained by leveling near the dam of the reservoir. PDC ratio was 1.15 mm/bar for these places. In elastic theory, the Young modulus E = 80 GPa (Poisson ratio = 0.25, the modulus of rigidity - 32 GPa) was calculated by sixteen years of leveling measurements. This result can effectively be represented for upper crust. Our results were checked by solution for coseismic displacement of Chyia- Altai earthquake (Sep. 27, 2003, M = 7.3). Coseismic results calculated by static modules agree with experimental coseismic GPS data at 10% level.
文摘This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stress t(rz) are carried out. It is found that the second order effect is to reduce z-direction displacement and to decrease t(rz)inside the circle but to increase its value outside the circle.
文摘This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear load, is presented. The method of integral transform is employed to determine the solutions.
文摘Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.
文摘The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surface loads. Two particular cases considered are: two-dimensional normal strip loading and axisymmetric normal disc loading. It is found that a negative Poisson’s ratio makes the Mandel-Cryer effect more prominent. It also results in an increase in the magnitude of the surface settlement.
基金National Science Foundation of China(No.61533010)the Science and Technology Commission of Shanghai Municipality,China(No.14ZR1415300)
文摘Dependence among random input variables affects importantly the results of probabilistic load flow(PLF),system economic operation,and system security.To solve this problem,the main objectiveness of the paper is to analyze the performance of several schemes for simulating correlated variables combined with the point estimate method(PEM).Unlike the existing works that considering one single scheme combined with Monte Carlo simulation(MCS) or PEM,by neglecting the correlation among random input variables,four schemes were presented for disposing the dependence of correlated random variables,including Nataf transformation /polynomial normal transformation(PINT) combined with orthogonal transformation(OT) / elementary transformation(ET).Combining with the 2m+1 approach of PEM,a space transformation-based formulation was proposed and adopted for solving the PLF.The proposed approach is applied in the modified IEEE 30-bus system while considering correlated wind generations and load demands.Numerical results show the effectiveness of the proposed approach compared with those obtained from the MCS.Results also show that the scheme of combining Nataf transformation and ET with PEM provides the best performance.
文摘The derivation of a diagonally loaded sample-matrix inversion (LSMI) algorithm on the busis of inverse matrix recursion (i.e.LSMI-IMR algorithm) is conducted by reconstructing the recursive formulation of covariance matrix. For the new algorithm, diagonal loading is by setting initial inverse matrix without any addition of computation. In addition, a corresponding improved recursive algorithm is presented, which is low computational complexity. This eliminates the complex multiplications of the scalar coefficient and updating matrix, resulting in significant computational savings. Simulations show that the LSMI-IMR algorithm is valid.
基金Supported by the National High Technology Research and Development Program of China("863"Program)(2011AA1569)
文摘Based upon the diagonal loading technique and the structure of the space-time adaptive processors, a novel anti-jamming method of satellite navigation is proposed. According to matrix in- verse theorem, the range of the diagonal loading values for space-time adaptive wideband signal pro- cessing structure is deduced, and the optimum equation of diagonal loading beam forming algorithm of space-time structure is obtained. Then, by the analysis of two-dimensional oriented vector in di- rection of the perturbation interference, the wideband interference covariance matrix obtained in the weights training period is modified. Finally, the optimum weight of multi-linear constrained space- time adaptive beam-forming alogrithm is derived for anti-interference filter processing. The new method effectively widens the null steering beams tion results prove the robustness of the proposed when discrepancy happens. The computer simula- method.
基金Funded by Natural Science Foundation of Henan Province Office of Education (No. 2009A560007)Doctor Foundation of Henan Polytechnic University (No. B2008-7)
文摘To investigate the bilateral shear strength of rectangular frame column subjected to oblique horizontal load, we presented a simplified space truss-arch model developed from unilateral truss-arch model. Main parameters in the new model were the cross-sectional area, transverse reinforcement raito, axial load, and material strength of the column. The reduction coefficient of concrete sterength owing to the severe cracking of column was also introduced in the model. Finally, 14 specimens under oblique horizontal load were tested to verified the feasibility and applicability of the space truss-arch model.
文摘Tubular section members made of steel are common in space trusses. There are several types of connections to attach these members. The most popular is the staking end-flattened connection. The reduced cost and the fast assemblage of the truss are among the advantages of the staking end-flattened connection on 3D trusses. However, such connections present disadvantages like eccentricities and stiffness weakening of the tubular members. In this work, based on computer simulations and experimental lab tests on prototypes, small changes on the staking end-flattened connections such as reinforcement and eccentricity correction are evaluated. The results show an increase of 68% for local collapse and 17% for global collapse in the truss load carrying capacity when the suggested changes proposed in this article are used for the staking end-flattened connections.
文摘The present paper represents comparison of continuum shells and latticed shells with qualitative analysis. For shells, the mechanical characteristics in the two perpendicular directions are continuous and related to each other, and any change in thickness will result in change in stiffness in any direction. In latticed shells, members are discrete and stiffnesses in two mutually perpendicular directions are discontinuous and independent of each other. Therefore, sensitivity of geometrical imperfection for buckling of latticed shells should be different from that of continuum shells. The author proposes a shape optimization method for maximum buckling load of a latticed shell. A single layer latticed dome is taken as a numerical example, and the results show that the buckling load parameter for full area loading case increases 32.75% compared to that of its initial shape. Furthermore, the numerical example demonstrates that an optimum latticed shell with maximum buckling load, unlike an optimum continuum shell, may not be sensitive to its geometrical imperfection.
基金the National Natural Science Foundation of China(No.51775325)the Joint Funds of the National Natural Science Foundation of China(No.U21A20121)+1 种基金the Key Research and Development Program of Ningbo(No.2023Z218)the Young Eastern Scholars Program of Shanghai(No.QD2016033).
文摘Subjective scales have different kinds of applicability in diverse fields.This study intends to implement a quantitative approach to determine the applicability of subjective scales in manual as-sembly work and evaluate the cognitive load of assembly workers.A multi-scale research paradigm based on subjective evaluation method is proposed.Three typical task stages are extracted from the process of assembly work.The National Aeronautics and Space Administration Task Load Index(NASA-TLX)scale,PAAS scale and Workload Profile Index Ratings(WP)scale are selected for the design of 3×3 multi-factor mixed experiment.The power spectrum density(PSD)characteris-tics of electroencephalogram(EEG)are utilized to identify the difficulty levels of the three task sta-ges.The relevant indicators of scale applicability are assessed.The results show that in terms of sensitivity,NASA-TLX scale reaches the highest sensitivity(F=999.137,P=0<0.05).In terms of validity,NASA-TLX scale possesses the best concurrent validity(P=0.0255<0.05).In terms of diagnosticity,NASA-TLX scale based on 6 dimensions takes on the best diagnostic performance.In terms of subject acceptability,WP scale performs the worst.According to the analytic hierarchy process(AHP)model,the applicability scores of NASA-TLX scale,PAAS scale and WP scale are determined as 3,2.55 and 1.6714,respectively.Therefore,NASA-TLX scale is regarded as the most suitable subjective evaluation questionnaire for assembly workers,which is also an effective quantitative evaluation method for the cognitive load of assembly workers.