期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China 被引量:18
1
作者 HUANG Xiaowen QI Liang MENG Yumiao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第1期176-195,共20页
Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits ... Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits in the Eastern Tianshan Orogenic Belt. The magnetite from these deposits typically contains detectable Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn and Ga. The trace element contents in magnetite generally vary less than one order of magnitude. The subtle variations of trace element concentrations within a magnetite grain and between the magnetite grains in the same sample probably indicate local inhomogeneity of ore–forming fluids. The variations of Co in magnetite between samples are probably due to the mineral proportion of magnetite and pyrite. Factor analysis has discriminated three types of magnetite: Ni–Mn–V–Ti(Factor 1), Mg–Al–Zn(Factor 2), and Ga– Co(Factor 3) magnetite. Magnetite from the Heifengshan and Shuangfengshan Fe deposits has similar normalized trace element spider patterns and cannot be discriminated according to these factors. However, magnetite from the Shaquanzi Fe–Cu deposit has affinity to Factor 2 with lower Mg and Al but higher Zn concentrations, indicating that the ore–forming fluids responsible for the Fe–Cu deposit are different from those for Fe deposits. Chemical composition of magnetite indicates that magnetite from these Fe(–Cu) deposits was formed by hydrothermal processes rather than magmatic differentiation. The formation of these Fe(–Cu) deposits may be related to felsic magmatism. 展开更多
关键词 trace elements magnetite LA–ICP–MS Fe(–Cu) deposits Eastern Tianshan Orogenic Belt Xinjiang
下载PDF
Using trace elements of magnetite to constrain the origin of the Pingchuan hydrothermal low-Ti magnetite deposit in the Panxi area, SW China 被引量:4
2
作者 Yanjun Wang Weiguang Zhu +3 位作者 Hong Zhong Zhongjie Bai Junhua Yao Chong Xu 《Acta Geochimica》 EI CAS CSCD 2019年第3期376-390,共15页
The Pingchuan iron deposit, located in the Yanyuan region of Sichuan Province, SW China, has an ore reserve of 40 Mt with ~60 wt% Fe. Its genesis is still poorly understood. The Pingchuan iron deposit has a parageneti... The Pingchuan iron deposit, located in the Yanyuan region of Sichuan Province, SW China, has an ore reserve of 40 Mt with ~60 wt% Fe. Its genesis is still poorly understood. The Pingchuan iron deposit has a paragenetic sequence of an early Fe-oxide–Pyrite stage(Ⅰ) and a late Fe-oxide–pyrrhotite stage(Ⅱ). Stage Ⅰ magnetite grains are generally fragmented, euhedral–subhedral, largesized crystals accompanying with slightly postdated pyrite.Stage Ⅱ magnetite grains are mostly unfragmented, anhedral, relatively small-sized grains that co-exist with pyrrhotite. Combined with micro-textural features and previously-obtained geochronological data, we consider that these two stages of iron mineralization in the Pingchuan deposit correspond to the Permian ELIP magmatism and Cenozoic fault activity event. Both the Stage Ⅰ and Ⅱ magnetites are characterized with overall lower contents of trace elements(including Cr, Ti, V, and Ni) than the ELIP magmatic magnetite, which suggests a hydrothermal origin for them. ‘‘Skarn-like'' enrichment in Sn, Mn, and Zn in the Stage Ⅰ magnetite grains indicate significant material contributions from carbonate wall-rocks due to water–rock interaction in ore-forming processes. Stage Ⅱ magnetite grains contain higher Mn concentrations than Stage Ⅰ magnetite grains, which possibly implies more contribution from carbonate rocks. In multiple-element diagrams, the Stage Ⅰ magnetite shows systematic similarities to Kiruna-type magnetite rather than those from other types of deposits. Combined with geological features and previous studies on oxygen isotopes, we conclude that hydrothermal fluids have played a key role in the generation of the Pingchuan low-Ti iron deposit. 展开更多
关键词 SW China Pingchuan IRON deposit Low-Ti IRON deposit HYDROTHERMAL magnetite
下载PDF
In-situ LA-ICP-MS trace element and oxygen isotope signatures of magnetite from the Yamansu deposit,NW China,and their significance 被引量:1
3
作者 Zhiyuan Sun Yuwang Wang Lingli Long 《Acta Geochimica》 EI CAS CSCD 2020年第5期599-615,共17页
The Yamansu iron deposit is hosted in submarine volcanic rocks in the Aqishan–Yamansu belt of Eastern Tianshan,NW China.A geological cross-section for the Carboniferous strata in the ore district shows that ore bodie... The Yamansu iron deposit is hosted in submarine volcanic rocks in the Aqishan–Yamansu belt of Eastern Tianshan,NW China.A geological cross-section for the Carboniferous strata in the ore district shows that ore bodies in the Yamansu deposit are hosted in andesitic crystal tuff of the third cycle of the Carboniferous Yamansu Formation.This indicates an association between mineralization and volcanism.The orebodies are strata bound and lensoid and generally share the occurrence state of the host rocks.Magnetite mineralization mainly occurs asbreccia ores,ores in the mineralized volcanic rocks,massive ores,and sulfide-rich ores according to their structures and sequences of formation.Trace element compositions of magnetite from various types of ores were determined by LA-ICP-MS.The dataset indicates thatdifferent types of magnetite havedistinct trace element contents correlated to their formation environments.Magnetite crystals from breccia ores have high Ti,Ni,V,Cr,and Co and low Si,Al,Ca,and Mg contents,indicating crystallization from a volcanic magmatic eruption,which is consistent with field evidence of coexisting altered volcanic breccia.Magnetite crystals from ores in the mineralized volcanic rocks have moderate Ti,Ni,V,Cr,and Co contents.In contrast,magnetite from massive ores and sulfide-rich ores have low concentrations of Ti,Cr,Ni,and V,high concentrations of Si,Al,Ca,and Mg,and evidence of hydrothermal magnetite.In-situ magnetite compositions imply a magmatic-hydrothermal process.Although d18 O values for magnetite grains from Yamansu vary(?1.3 to?7.0%),they all plot in the range field of volcanic iron deposits,and they also record a magmatic-hydrothermal process.The compositions of Yamansu magnetites are interpreted as controlled mainly by temperature,fluid,host rock buffering,oxygen fugacity,and sulfur fugacity.The metallogenic conditions of the Yamansu deposit changed from high temperature and low oxygen fugacity to low temperature and high oxygen fugacity.However,more fluid-rock reactions and higher sulfur fugacity were involved during the deposition of massive ores and sulfiderich ores. 展开更多
关键词 magnetite Trace element composition LAICP-MS Oxygen isotope Yamansu iron deposit Eastern Tianshan
下载PDF
Metallogeny of Serpentinite-hosted Magnetite Deposits: Hydrothermal Overgrowth on Chromite or Metamorphic Transformation of Chromite?
4
作者 Alireza ESLAMI Ali KANANIAN +2 位作者 Giovanni GRIECO G.Diego GATTA Nicola ROTIROTI 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第S01期5-5,共1页
Peculiar and rare occurrences of serpentinite-hosted magnetite deposits with mineable sizes are found in the Mesozoic ophiolites of Greece(Skyros), Iran(Nain and Sabzevar) and Oman(Aniba). These deposits have diverse ... Peculiar and rare occurrences of serpentinite-hosted magnetite deposits with mineable sizes are found in the Mesozoic ophiolites of Greece(Skyros), Iran(Nain and Sabzevar) and Oman(Aniba). These deposits have diverse thickness(from a few centimeters up to 50 m) and length(2 to >500 m). Magnetite ores show variable textures, including massive, nodular and banded ores, veins, net and fine-grained disseminations in serpentinites. Intriguingly, the investigated magnetite deposits can be mistaken for chromitite pods. Serpentinite-hosted magnetite deposits show three modes of occurrences including:(i) boulders strewn across the serpentinites(i.e. Skyros Island);(ii) ore bodies along the nonconformity contacts between serpentinites and limestones(i.e. Aniba);(iii) irregular and discontinuous trails of massive and semi-massive ore bodies within highly sheared serpentinite masses(i.e. Nain;Sabzevar). In all of these magnetite ore bodies, relicts of chromian spinel grains are occasionally enclosed in magnetite crystals. The chemistry of Cr-spinel relics found in these magnetite bodies are comparable to those of accessory Crspinels in the surrounding serpentinized peridotites. BSE images and elemental mapping revealed that magnetite occurs as a nucleation on chromian spinels but not being involved in reaction either with chromite or ferritchromite. Low-grade metamorphic transformation of chromite into Fe-chromite is documented along the cracks and fractures of a few chromite grains. Generally, magnetite has typical hydrothermal compositions, characterized by low Cr, V and Ti and high Mg and Mn. It is crucial to note that a few magnetite grains with metamorphic origin are characterized by high Cr and low Ti and Ni. The potential source of iron is essentially the Fe-rich olivine. We believe that multi-episodic serpentinization of peridotite systems at high fluid-rock ratios is the main process responsible for precipitation of magnetite at ore levels whereas low-grade metamorphic transformation of chromite to magnetite has minor contribution. Cumulative factors in generation of these deposits are modal volume of mantle olivine, peridotite composition, fluid chemistry, fluid-rock ratio, mechanisms of transportation and precipitation, structural controls such as cracks and shear zones. 展开更多
关键词 serpentinite-hosted magnetite deposit multi-episodic serpentinization metamorphic transformation
下载PDF
The Shaytor Apatite-Magnetite Deposit in the Kashmar-Kerman Tectonic Zone (Central Iran): A Kiruna-Type Iron Deposit
5
作者 Dariush Esmailiy Saeid Zakizadeh +2 位作者 Fatemeh Sepidbar Ali Kanaanian Shojaaddin Niroomand 《Open Journal of Geology》 2016年第8期895-910,共17页
The Shaytor apatite-rich iron deposit is located in the Kashmar-Kerman tectonic zone in the central of the Iranian plat, which is an important polymetallic belt in Iran. The ore bodies are interbedded with the upper i... The Shaytor apatite-rich iron deposit is located in the Kashmar-Kerman tectonic zone in the central of the Iranian plat, which is an important polymetallic belt in Iran. The ore bodies are interbedded with the upper inferacaamberian calc-alkaline igneous rocks that show well-preserved porphyritic and volcaniclastic textures. The iron ores have massive, disseminated, and brecciated structures. Magnetite from the Shaytor deposit is low in Ti (TiO<sub>2</sub> = up to 0.70 wt.%) and different ore types show similar rare earth element (REE) and trace element-normalized patterns with weak-to-moderate enrichment in light REE and negative Eu anomalies, indicating a common source and genesis. The similar REE patterns for the magnetite and volcanic basaltic host rocks suggest their close genetic linkage and support a magmatic origin for the deposit. The Shaytor deposit shows the typical characteristics of Kiruna-type deposits with regard to the mineral assemblages, ore texture and structure, and the apatite and magnetite geochemistry. We propose that the Kiruna-type Shaytor apatite-rich iron deposit was derived from Fe-P-rich melt through liquid immiscibility and the activity of hydrothermal fluids. 展开更多
关键词 magnetite-Apatite Shaytor Iron deposit Kashmar-Kerman Tectonic Zone
下载PDF
Germanium in Magnetite:A Preliminary Review 被引量:2
6
作者 MENG Yumiao HU Ruizhong +1 位作者 HUANG Xiaowen GAO Jianfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期711-726,共16页
Magnetite is a very common mineral in various types of iron deposits and some sulfide deposits. Recent studies have focused on the use of trace elements in magnetite to discriminate ore types or trace ore-forming proc... Magnetite is a very common mineral in various types of iron deposits and some sulfide deposits. Recent studies have focused on the use of trace elements in magnetite to discriminate ore types or trace ore-forming process. Germanium is a disperse element in the crust, but sometimes is not rare in magnetite. Germanium in magnetite can be determined by laser ablation ICP-MS due to its low detection limit(0.0X ppm). In this study, we summary the Ge data of magnetite from magmatic deposits, iron formations, skarn deposits, iron oxide copper-gold deposits, and igneous derived hydrothermal deposits. Magnetite from iron formations contains relatively high Ge(up to ~250 ppm), whereas those from all other deposits mostly contains Ge less than 10 ppm, indicating that iron formations can be discriminated from other Fe deposits by Ge contents. Germanium in magmatic/hydrothermal magnetite is controlled by a few factors. Primary magma/fluid composition may be the major control of Ge in magnetite. Higher oxygen fugacity may be beneficial to Ge partition into magnetite. Sulfur fugacity and temperature may have little effect on Ge in magnetite. The enrichment mechanism of Ge in magnetite from iron formations remains unknown due to the complex ore genesis. Germanium along with other elements(Mn, Ni, Ga) and element ratios(Ge/Ga and Ge/Si raios) can distinguish different types of deposits, indicating that Ge can be used as a discriminate factor like Ti and V. Because of the availability of in situ analytical technique like laser ablation ICP-MS, in situ Ge/Si ratio of magnetite can serve as a geochemical tracer and may provide new constraints on the genesis of banded iron formations. 展开更多
关键词 GERMANIUM magnetite controlling factor iron deposits discriminate factor
下载PDF
Linkage of Mineral Inclusions and Zoning of Magnetite with Fluid Evolution of Hydrothermal Systems:A Case Study of the Fenghuangshan Cu-Fe-Au Skarn Deposit,Eastern China
7
作者 Xiao-Wen Huang Yiping Yang +3 位作者 Mei-Fu Zhou Yu-Miao Meng Jian-Feng Gao Liang Qi 《Journal of Earth Science》 SCIE CAS CSCD 2024年第6期1902-1917,共16页
Magnetite from hydrothermal deposits may show compositional zoning with various mineral inclusions in response to the evolution of hydrothermal fluids.Magnetite from the Fenghuangshan Cu-Fe-Au skarn deposit(eastern Ch... Magnetite from hydrothermal deposits may show compositional zoning with various mineral inclusions in response to the evolution of hydrothermal fluids.Magnetite from the Fenghuangshan Cu-Fe-Au skarn deposit(eastern China)is a common mineral formed in the earlier stage of skarnization.Magnetite grains have dark gray and light gray zones and contain diverse mineral inclusions.Dark gray zones have higher Si,Ca,Al,and Mg contents than light gray zones.The magnetite matrix from dark gray zones shows superstructure along the[0-11]zone axis in fast Fourier transform patterns,different from magnetite in light gray zones with normal structure.Three types of mineral inclusions are identified within magnetite:nano-,micron-and submicron-nanometer inclusions.Nanoinclusions hosted in dark gray zones are actinolite,diopside,and trace element-rich magnetite,and these are likely formed by growth entrapment during magnetite crystallization at the skarn stage.The chainwidth order-disorder intergrowths of diopside nanoinclusion likely indicate fluctuating fluid compositions in a lattice scale.Submicron to nanometer inclusions at the boundary between dark gray and light gray zones are quartz,titanite,and Ti-rich magnetite,which were formed via a dissolution and reprecipitation process at the quartz-sulfide stage.Micron-inclusions randomly distributed in both dark and light gray zones include calcite,ankerite,quartz,and chlorite,and these were formed via penetration of fluids at the carbonate stage.Zoned magnetite was formed by fluid replacement,overgrowth,and fluid infilling.Our study highlights the importance of mineral inclusion assemblages,and textural and chemical zonation of magnetite in constraining fluid evolution. 展开更多
关键词 mineral inclusions magnetite mineral zoning SKARN ore-forming process depositS
原文传递
Applied Mineralogical Studies on Iranian Titanium Deposits
8
作者 Akbar Mehdilo Mehdi Irannajad Bahram Rezai 《矿物学报》 CAS CSCD 北大核心 2013年第S1期4-4,共1页
Qara-aghaj and Skandian as hard rock titanium deposit and Kahnooj one as a placer deposit were investigated from applied mineralogical point of view. The mineralogical studies were carried out using XRD, XRF, optical ... Qara-aghaj and Skandian as hard rock titanium deposit and Kahnooj one as a placer deposit were investigated from applied mineralogical point of view. The mineralogical studies were carried out using XRD, XRF, optical microscopy, scanning electron microscopy and microprobe analysis. These studies indicated that ilmenite and magnetite are main valuable minerals in the studied ores. Pyroxene, olivine and plagioclase are the main gangue minerals in Qara-aghaj ore while chlorite and plagioclase are the major gangue minerals in Skandian ore. Plagioclase, clinopyroxene, amphibole, feldspate and some quartz are the important gangue minerals in kahnooj deposit. In all three ores ilmenite is mainly in the form of ilmenite grains but some lamellae of ilmenite with thickness between 0.1 to 20 μm have been occurred as exsolution textures inside magnetite grains, where the magnetite here can be referred to as ilmenomagnetite. In the hard rock ores some fine ilmenites have been disseminated in silicate minerals. The liberation degree of granular ilmenite was determined 150, 140 and 200 μm for Qara-aghaj, Skandian and Kahnooj, respectively. So, only the granular form of ilmenite is recoverable by physical methods. Some sphene and rutile as titanium containing minerals were observed mainly inside ilmenite phase in kahnooj ore. Some fine rutile was also found inside Skandian ilmenite while there were not any other titanium minerals inside Qara-aghaj ilmenite. Apatite is another valuable mineral which was found only in Qara-aghaj ore. Using SEM and microprobe analysis it was found that there are different amounts of exsolved fine lamellae of hematite inside ilmenite in Qara-aghaj and Kahnooj ores while it was not observed in Sckandian one. The average contents of TiO2 in the lattice of Qara-aghaj, Skandian and Kahnooj ilmenite were determined 51.13, 50.9% and 52.02%, respectively. FeO content of ilmenite lattice for all three samples is clearly lower than the theoretical content. This is due to the substitution of Mg and Mn for some Fe2+ ions in the ilmenite lattice. V2O3 content of magnetite lattice is up to 1%. So, magnetite can be a suitable source for production of vanadium as a by-product in all three deposits. 展开更多
关键词 titanium APPLIED mineralogy ILMENITE magnetite TITANOmagnetite hard rock deposit PLACER deposit
下载PDF
In-situ experiments reveal mineralization details of porphyry copper deposits
9
作者 Weidong SUN Xiuqi SHANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第1期110-112,共3页
In-situ hydrothermal experiments using diamond-anvil cell show that sulfate and sulfi de are the dominant sulfur species under P-T conditions similar to those of porphyry magmas.No sulfi te was identifi ed using in-si... In-situ hydrothermal experiments using diamond-anvil cell show that sulfate and sulfi de are the dominant sulfur species under P-T conditions similar to those of porphyry magmas.No sulfi te was identifi ed using in-situ Raman spectrometer.This supports that porphyry copper mineralization is controlled by sulfate reduction,rather than sulfi te disproportionation. 展开更多
关键词 diamond cell SULFATE sulfi de porphyry deposits magnetite crisis
下载PDF
Mineralization, Mineralogy and Geochemistry of Saheb Fe-Cu Deposit of Saqqez (Kurdestan), NW Iran
10
作者 Zahra Zandi Alireza Jafari Rad +1 位作者 Arash Gourabjeripour Mohammad Lotfi 《Open Journal of Geology》 2018年第5期514-528,共15页
The Saheb Fe-Cu skarn deposit is located in the Sanandaj-Sirjan metamorphic belt, SE Saqqez, western Iran and has been formed along the contact between the Oligo-Miocene aged Saheb granitoid and the Permian aged impur... The Saheb Fe-Cu skarn deposit is located in the Sanandaj-Sirjan metamorphic belt, SE Saqqez, western Iran and has been formed along the contact between the Oligo-Miocene aged Saheb granitoid and the Permian aged impure calcareous rocks and includes endoskarn and exoskarn. Exoskarn is widely developed and includes garnet and epidote skarn zones. The majority of mineralized zones are concentrated in garnet skarn. The relatively oxidizing mineralogical assemblage of the Saheb skarn includes garnet (andradite-grossular), pyroxene (diopside-hedenbergite), magnetite and hematite. Magnetite is the main and abundant ore mineral throughout the ore deposit. Based on field evidences and microscopic studies of skarn zone samples, two stages of prograde and retrograde alteration are distinguishable. According to the results of sample analysis of Saheb skarn intrusive body by XRF and ICP-MS techniques, the combination of this body is chiefly granite to granodiorite-diorite and belongs to the I-type granitoids, metaluminous and K-rich calc-alkaline series. The Saheb granitoid is related to the VAG (Volcanic Arc Granite) tectonic setting. 展开更多
关键词 Iran Saqqez Saheb deposit Iron SKARN METASOMATISM magnetite
下载PDF
峨眉大火成岩省攀西钒钛磁铁矿矿集区钴、镓、钪资源及综合利用潜力 被引量:2
11
作者 宋谢炎 佘宇伟 +3 位作者 栾燕 何海龙 张祺龙 郑文勤 《矿物岩石地球化学通报》 CAS CSCD 北大核心 2024年第1期218-231,共14页
峨眉大火成岩省内带攀西地区的攀枝花、红格、白马、太和等矿床的钒钛磁铁矿矿石量约100亿t,V_(2)O_(5)储量1580万t、TiO_(2)储量8.7亿t,此外还蕴含着丰富的Co、Ga、Sc、Cr等十多种稀有金属。尽管自20世纪八九十年代V和Ti逐渐得到了利用... 峨眉大火成岩省内带攀西地区的攀枝花、红格、白马、太和等矿床的钒钛磁铁矿矿石量约100亿t,V_(2)O_(5)储量1580万t、TiO_(2)储量8.7亿t,此外还蕴含着丰富的Co、Ga、Sc、Cr等十多种稀有金属。尽管自20世纪八九十年代V和Ti逐渐得到了利用,但是Co、Ga、Sc、Cr等元素尚未得到综合利用,这些矿床的尾矿中还有巨量的各种金属元素。本文对近年来获得的磁铁矿、钛铁矿、单斜辉石电子探针和激光等离子质谱原位分析数据进行了系统分析,发现Ga和Cr主要赋存在磁铁矿中,Co主要赋存在硫化物和磁铁矿中,Sc主要赋存在单斜辉石和钛铁矿中;而且不同岩体中的磁铁矿、钛铁矿和单斜辉石中各种元素的含量存在差异。这些分析为矿石、尾矿甚至某些岩石中这些元素的综合利用提供了重要信息。 展开更多
关键词 钒钛磁铁矿 峨眉大火成岩省
下载PDF
磁铁矿:研究方法与矿床学应用
12
作者 黄小文 孟郁苗 +8 位作者 漆亮 周美夫 高剑峰 谭侯铭睿 谢欢 谭茂 杨志爽 高英辉 张鑫 《华东地质》 CAS 2024年第1期1-15,共15页
磁铁矿在自然界普遍存在,其成岩和成矿作用研究备受关注。文章系统地总结了近年来磁铁矿的研究进展,介绍了磁铁矿的研究方法体系,并探讨了其在矿床学研究中的应用。磁铁矿的研究方法包括磁铁矿的年代学、显微结构、元素和同位素组成。... 磁铁矿在自然界普遍存在,其成岩和成矿作用研究备受关注。文章系统地总结了近年来磁铁矿的研究进展,介绍了磁铁矿的研究方法体系,并探讨了其在矿床学研究中的应用。磁铁矿的研究方法包括磁铁矿的年代学、显微结构、元素和同位素组成。在磁铁矿的方法学基础上,进一步探讨了磁铁矿Re-Os同位素定年在成矿年代学研究中的应用、磁铁矿有关的温度计和氧逸度计以及矿床类型判别等。此外,以铁氧化物-铜-金和铁氧化物-磷灰石矿床为例,讨论了磁铁矿微量元素组成对这些矿床成因的制约,并初步总结了磁铁矿微量元素组成在找矿勘查方面的应用。磁铁矿作为重要的矿床学研究对象,已助推矿床成因和找矿勘查研究,具有巨大的应用潜力,包括原位U-Pb年代学和非传统稳定同位素示踪(如V同位素)等。然而,磁铁矿中微量元素的赋存状态、分配行为以及磁铁矿地球化学数据库等是磁铁矿研究中较薄弱的环节,亟需进一步加强。 展开更多
关键词 磁铁矿 显微结构 微量元素 年代学 矿床类型 找矿勘查
下载PDF
北山地区石炭纪海相火山岩中基鲁纳型铁矿床的厘定及对区域成矿的指示:以内蒙古碧玉山铁矿床为例
13
作者 胡浩 殷勇 徐磊 《地质科技通报》 CAS CSCD 北大核心 2024年第4期219-223,共5页
北山地区发育众多赋存于石炭纪海相火山岩中的铁矿床,其中内蒙古碧玉山铁矿床是该区典型的这类矿床之一。该矿床地处内蒙古自治区的西北缘,勘查工作程度相对较低,矿床成因研究程度较为薄弱。经过野外及初步的岩相学观察工作对内蒙古碧... 北山地区发育众多赋存于石炭纪海相火山岩中的铁矿床,其中内蒙古碧玉山铁矿床是该区典型的这类矿床之一。该矿床地处内蒙古自治区的西北缘,勘查工作程度相对较低,矿床成因研究程度较为薄弱。经过野外及初步的岩相学观察工作对内蒙古碧玉山铁矿床进行了研究。研究表明,碧玉山铁矿床普遍具有磁铁矿-磷灰石的矿物组合,其中磷灰石普遍经历溶解-再沉淀作用而导致内部含有大量细小的独居石包裹体。磁铁矿中普遍发育钛铁矿出溶结构,具有高温的磁铁矿特征。这些特征与区域上发育的具有矽卡岩化及低钛磁铁矿的其他矿床明显不同,而与典型的基鲁纳型(铁氧化物-磷灰石型)铁矿床在矿物组合及磷灰石、磁铁矿矿物学特征等方面非常相似。笔者对该铁矿的地质特征开展初步分析认为,内蒙古北山地区碧玉山铁矿床属于赋存于海相火山岩中的基鲁纳型铁矿床,这对该区基鲁纳型铁矿床的成矿理论及找矿勘查工作具有指导意义。 展开更多
关键词 基鲁纳型(铁氧化物-磷灰石型)矿床 碧玉山铁矿 磁铁矿 磷灰石 矿床成因
下载PDF
东秦岭钼多金属成矿带夜长坪斑岩-矽卡岩型钼钨矿床磁铁矿成因类型与指示意义
14
作者 晏国龙 祁小军 +1 位作者 肖淳 蒋昊原 《黄金》 CAS 2024年第11期34-44,共11页
夜长坪超大型斑岩-矽卡岩型钼钨矿床位于东秦岭钼多金属成矿带,保存了完整的矽卡岩形成演化及成矿作用的重要信息。通过详细的野外地质调查及镜下鉴定,将夜长坪钼钨矿床中的磁铁矿划分为3种类型:晚矽卡岩阶段形成以他型粒状或以聚合体... 夜长坪超大型斑岩-矽卡岩型钼钨矿床位于东秦岭钼多金属成矿带,保存了完整的矽卡岩形成演化及成矿作用的重要信息。通过详细的野外地质调查及镜下鉴定,将夜长坪钼钨矿床中的磁铁矿划分为3种类型:晚矽卡岩阶段形成以他型粒状或以聚合体形式与黑云母、绢云母、黏土等矿物共生的Mt1型磁铁矿;氧化物阶段形成半自形至自形与石榴子石、透闪石、阳起石等矿物共生的Mt2型磁铁矿;呈稠密浸染状与辉钼矿等硫化物共生,或产出在石英多金属硫化物脉中的Mt3型磁铁矿。电子探针及LA-ICP-MS原位测试分析结果显示:Mt1~Mt3型磁铁矿FeO平均含量逐渐升高,Mt1型磁铁矿富Si、Mg、Na等元素,具有最高的V、Cr、Ti、Al和Mo含量。Mt2型磁铁矿Ti元素含量明显降低,Si含量略有下降,具有最高含量的Mg和Mn。Mt3型磁铁矿中Ti、Si、Na、Ca元素含量均最低。磁铁矿元素变化特征显示,Fe元素易被Si、Ca、Al等元素替换;随磁铁矿的结晶,成矿流体中逐渐富集Mo等成矿元素。磁铁矿成因判别图解显示,Mt1型磁铁矿与另外2种磁铁矿形成物质来源略有不同,Mt1型磁铁矿更偏向于岩浆热液成因,Mt2型磁铁矿和Mt3型磁铁矿则更偏向于变质热液成因,随着Mt2型磁铁矿的形成,赋矿围岩参与成矿的程度逐渐增强。从早期较高温的Mt1型磁铁矿至晚期较低温的Mt3型磁铁矿,V和Ti具有较为明显的正相关关系;流体-岩石作用程度判别图解显示交代作用逐渐增强。因此,在夜长坪钼钨矿床氧逸度的变化和流体-岩石作用程度的逐渐增强是控制成矿的主要因素。 展开更多
关键词 矿物学 斑岩-矽卡岩型 钼钨矿床 磁铁矿 LA-ICP-MS 成因类型 东秦岭 钼多金属成矿带
下载PDF
西昆仑塔什库尔干新迭铁矿床赋矿地层形成时代及其地质意义
15
作者 陈港 陈懋弘 +5 位作者 杨成栋 刘峰 李厚民 马收先 任程昊 张磊 《矿床地质》 CAS CSCD 北大核心 2024年第5期977-992,共16页
布伦阔勒群是西昆仑塔什库尔干地块的主要组成部分,也是该区域铁矿床的赋矿层位,主要发育有老并、赞坎、喀来子和叶里克等矿床。新迭铁矿为塔什库尔干成矿带北部新发现的一个小型矿床,主要含矿岩性为石英片岩、云母斜长片岩、大理岩等... 布伦阔勒群是西昆仑塔什库尔干地块的主要组成部分,也是该区域铁矿床的赋矿层位,主要发育有老并、赞坎、喀来子和叶里克等矿床。新迭铁矿为塔什库尔干成矿带北部新发现的一个小型矿床,主要含矿岩性为石英片岩、云母斜长片岩、大理岩等。新迭铁矿的形成与沉积成矿作用密切相关,其主要矿体与布伦阔勒群底部的含铁建造同生,且顺层产出。笔者对新迭铁矿赋矿围岩布伦阔勒群和铁矿体中的碎屑锆石进行年代学研究,结果表明布伦阔勒群最年轻碎屑锆石年龄主要集中在588.0~513.6 Ma,推测新迭铁矿布伦阔勒群的形成年龄应晚于588.0~513.6 Ma,为寒武纪成岩。因此,新迭铁矿的形成与寒武纪铁建造沉积有关,后期经历了区域高级变质作用和岩浆热液的改造。新迭铁矿布伦阔勒群形成时代为早古生代,应从原划分方案的古元古界地层中剥离出来。 展开更多
关键词 磁铁矿 U-PB年龄 寒武系 新迭铁矿 塔什库尔干铁矿带
下载PDF
攀西太和钒钛磁铁矿中钴的分布规律及赋存状态
16
作者 梅亚军 惠博 杨耀辉 《矿产综合利用》 CAS 2024年第5期63-70,75,共9页
这是一篇工艺矿物学领域的论文。钴是重要的战略金属,主要以共-伴生元素的形式分布于金属矿床中。攀西地区的钒钛磁铁矿矿床是我国最大的钒钛铁资源基地,其矿床中伴生了大量的钴资源,但富钴矿石中钴在矿物相之间的分布规律及微观的赋存... 这是一篇工艺矿物学领域的论文。钴是重要的战略金属,主要以共-伴生元素的形式分布于金属矿床中。攀西地区的钒钛磁铁矿矿床是我国最大的钒钛铁资源基地,其矿床中伴生了大量的钴资源,但富钴矿石中钴在矿物相之间的分布规律及微观的赋存状态还未被查明。本文选择攀西地区太和钒钛磁铁矿矿床作为研究对象,利用化学分析、光学显微镜、扫描电镜(SEM-BSE)、X射线衍射分析(XRD)、高级矿物鉴定和表征系统(AMICS)、电子探针(EPMA)等分析技术对矿床中典型的富钴矿石进行了化学成分、矿物组成以及Co元素在不同矿物间分布规律及赋存状态进行了研究,研究结果表明富钴样品矿物中硫化物具有较高的钴含量,而铁钛氧化物中钴含量较低,其他矿物中几乎不含有钴,钴的分布规律表明其主要分布于硫化物中,少量分布于铁钛氧化物以及脉石矿物中。样品中钴元素具有独立矿物-硫钴镍矿和类质同象两种赋存状态。研究结果为该地区钴资源的综合利用提供矿物学依据。 展开更多
关键词 赋存状态 钒钛磁铁矿矿床 攀西地区 分布规律
下载PDF
Re-Os dating of magnetite from the Shaquanzi Fe-Cu deposit,eastern Tianshan,NW China 被引量:15
17
作者 HUANG XiaoWen QI Liang +1 位作者 WANG YiChang LIU YingYing 《Science China Earth Sciences》 SCIE EI CAS 2014年第2期267-277,共11页
Magnetite separates from the Shaquanzi Fe-Cu deposit in the eastern Tianshan are used for Re-Os geochronological study. Re-Os data show that magnetite separates contain ca. 0.7 to 50.9 ppb Re and ca. 16 to 63 ppt Os. ... Magnetite separates from the Shaquanzi Fe-Cu deposit in the eastern Tianshan are used for Re-Os geochronological study. Re-Os data show that magnetite separates contain ca. 0.7 to 50.9 ppb Re and ca. 16 to 63 ppt Os. Eight samples yield a model 3 isochron age of (303 ±12) Ma (2or), which is within uncertainty consistent with of the Re-Os date (295±7 Ma) of associated pyrite. Tectonic evolution shows that the Late Carboniferous Aqishan-Yamansu belt was a back-arc rift. Therefore, the Re-Os age of ca. 300 Ma indicates that the Shaquanzi Fe-Cu deposit may have formed in a back-arc extensional environment and was closely related to mantle-derived magmatism. The successful application of Re-Os magnetite geochronology in the Shaquanzi Fe-Cu deposit suggests that the purity of magnetite, relatively high Re and Os contents, and the closure of Re-Os systematic are base factors for a successful Re-Os geochronology. There would be a good prospect for Re-Os geochronology for magnet- ite. 展开更多
关键词 Re-Os isotopes magnetite Fe-Cu deposit Shaquanzi eastern Tianshan
原文传递
塞拉利昂东方省盖布韦马铁矿床地质特征及找矿标志 被引量:1
18
作者 刘建 徐如磊 +1 位作者 包久荣 王飞 《地质找矿论丛》 CAS 2024年第1期128-133,共6页
盖布韦马铁矿隶属于塞拉利昂东方省凯内马(Kenema)行政区,其属产于太古界高绿片岩相-麻粒岩相变质岩中的沉积变质型(BIF)铁矿床。本文通过对该区铁矿床成矿地质背景和矿床特征的分析,总结了该区的成矿规律及找矿标志。结果表明,该矿床... 盖布韦马铁矿隶属于塞拉利昂东方省凯内马(Kenema)行政区,其属产于太古界高绿片岩相-麻粒岩相变质岩中的沉积变质型(BIF)铁矿床。本文通过对该区铁矿床成矿地质背景和矿床特征的分析,总结了该区的成矿规律及找矿标志。结果表明,该矿床由含铁硅质建造经区域变质作用形成,矿化带呈层状或似层状近平行产出,走向NE-NNE,倾向NW-NWW,倾角一般35°~70°;空间上分布在太古宇变质岩中,严格受其限制;矿体主要由条带状磁铁石英岩构成;太古界变粒岩、片麻岩内条带状辉石磁铁石英岩、磁铁角闪辉石黑云斜长变粒岩、磁铁角闪紫苏辉长岩是找矿地层标志。 展开更多
关键词 沉积变质型铁矿 条带状磁铁石英岩 盖布韦马 塞拉利昂
下载PDF
Iron Isotopes and Trace Element Compositions of Magnetite from the Submarine Volcanic-Hosted Iron Deposits in East Tianshan,NW China:New Insights into the Mineralization Processes 被引量:6
19
作者 Zhe Song Houmin Li +2 位作者 Lixing Li Jianhua Ding Jie Meng 《Journal of Earth Science》 SCIE CAS CSCD 2021年第1期219-234,共16页
The Aqishan-Yamansu metallogenic belt(AYMB)in East Tianshan hosts abundant sub-marine volcanic-hosted iron deposits.Although there is agreement with the magmatic source of the ore-forming materials and the role of hyd... The Aqishan-Yamansu metallogenic belt(AYMB)in East Tianshan hosts abundant sub-marine volcanic-hosted iron deposits.Although there is agreement with the magmatic source of the ore-forming materials and the role of hydrothermal replacement in iron ore formation,the mineraliza-tion processes of these iron deposits remain uncertain.Three ore types are identified on the basis of the geological occurrences of minerals and the sequence of mineral in ores.The typeⅠores are characte-rized by magnetite,diopside,amphibole with a few pyrite,and chalcopyrite.The type II ores are mainly composed of magnetite,garnet,chlorite with a few pyrite,while the type III ores are mainly composed of magnetite,quartz,calcite with a few pyrite.In order to constrain the mineralization processes of these ore types,we performed iron isotopes and trace element compositions of magnetite from three typical iron deposits(Yamansu,Duotoushan and Luotuofeng).Trace element and Fe isotope investiga-tions of the three ore types reveal two major groups.The groupⅠconsists of analyses of the typeⅠandⅡores,with both showing a narrow range of positiveδ56Fe values(+0.08‰to+0.22‰for typeⅠores and+0.15‰ to+0.22‰ for typeⅡores)and plotting in the range of the ortho-magmatic field.In contrast,the group 2 is composed merely of the typeⅢores,showing a wider range of negativeδ56Fe values(-0.49‰ to-0.01‰),which is similar to the features of Fe-skarn magnetite.As shown in the binary dia-grams of magnetite trace elements and a fractionation of the Fe isotopes,different ore types were likely produced during gradually changing ore-forming stages from magmatic to hydrothermal.Collectively,the submarine volcanic-hosted iron deposits in the East Tianshan are likely the results of a continuous magmatic-hydrothermal mineralization process. 展开更多
关键词 East Tianshan submarine volcanic rock-hosted iron deposit Fe-isotopes magnetite trace elements magmatic-hydrothermal
原文传递
铁矿矿床地质特征及找矿标志研究
20
作者 李磊 《新疆钢铁》 2024年第3期80-82,共3页
本研究聚焦于特定区域的铁矿矿床,通过对矿床地质特征和找矿标志的深入研究,揭示了铁矿矿床的地质结构、成矿条件及成因机制。研究发现,该区域铁矿体受特定地层的严格控制,与围岩差异显著,为地球物理和地球化学勘查提供了明确的找矿标... 本研究聚焦于特定区域的铁矿矿床,通过对矿床地质特征和找矿标志的深入研究,揭示了铁矿矿床的地质结构、成矿条件及成因机制。研究发现,该区域铁矿体受特定地层的严格控制,与围岩差异显著,为地球物理和地球化学勘查提供了明确的找矿标志。此外,褶皱构造与断裂系统的活动为铁矿成矿提供了有利的空间条件。本研究不仅为未来铁矿勘探与开发提供了科学依据,也为铁矿矿床地质学的发展及我国铁矿资源勘查能力的提升贡献了新的认识与思路。后续找矿工作应侧重于对复向斜北翼磁异常区的深入探索,以期为我国铁矿资源的可持续利用奠定坚实基础。 展开更多
关键词 铁矿矿床 地质特征 磁铁矿 找矿标志
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部