The heat transfer and pressure loss characteristics on a square channel with two opposite surfaces roughened by high blockage ratio ribs are measured by systematic experiments.Reynolds numbers studied in the channel r...The heat transfer and pressure loss characteristics on a square channel with two opposite surfaces roughened by high blockage ratio ribs are measured by systematic experiments.Reynolds numbers studied in the channel range from 1 400 to 8 000.The ratios of rib height to hydraulic diameter (e/D) are 0.2and 0.33,respectively.The ratio of rib spacing to height (P/e) ranges from 5to 15.The rib orientations in the opposite surfaces are symmetrical and staggered arrangements.The results show that the heat transfer coefficients are increased with the increase of rib height and Reynolds number,though at the cost of higher pressure losses.When the rib spacing to height ratio is 10,it keeps the highest heat transfer coefficient in three kinds of rib spacing to height ratios 5,10 and 15.The heat transfer coefficient of symmetrical arrangement ribs is higher than that of the staggered arrangement ribs,but the pressure loss of the symmetrical arrangement ribs is larger than that of the staggered arrangement ribs.展开更多
Experimental and numerical investigations have been conducted to study turbulent flow of water and heat transfer characteristics in a rectangular channel with discontinuous crossed ribs and grooves.The tests investiga...Experimental and numerical investigations have been conducted to study turbulent flow of water and heat transfer characteristics in a rectangular channel with discontinuous crossed ribs and grooves.The tests investigated the overall heat transfer performance and friction factor in ribbed and ribbed-grooved channels with rib angle of 30°.The experimental results show that the overall thermo-hydraulic performance for ribbed-grooved channel is increased by 10%-13.6% when compared to ribbed channel.The investigation on the effects of different rib angles and rib pitches on heat transfer characteristics and friction factor in ribbed-grooved channel was carried out using Fluent with SST(shear-stress transport) k-ω turbulence model.The numerical results indicate that the case for rib angle of 45° shows the best overall thermo-hydraulic performance,about 18%-36% higher than the case for rib angle of 0°.In addition,the flow patterns and local heat transfer characteristics for ribbed and ribbed-grooved channels based on the numerical simulation were also analyzed to reveal the mechanism of heat transfer enhancement.展开更多
A numerical investigation has been carried out to examine turbulent flow and heat transfer characteristics in a three-dimensional ribbed square channels. Fluent 6.3 CFD code has been used. The governing equations are ...A numerical investigation has been carried out to examine turbulent flow and heat transfer characteristics in a three-dimensional ribbed square channels. Fluent 6.3 CFD code has been used. The governing equations are discretized by the second order upwind differencing scheme, decoupling with the SIMPLE (semi-implicit method for pressure linked equations) algorithm and are solved using a finite volume approach. The fluid flow and heat transfer characteristics are presented for the Reynolds numbers based on the channel hydraulic diameter ranging from 104 to 4 ′ 104. The effects of rib shape and orientation on heat transfer and pressure drop in the channel are investigated for six different rib configurations. Rib arrays of 45° inclined and 45° V-shaped are mounted in inline and staggered arrangements on the lower and upper walls of the channel. In addition, the performance of these ribs is also compared with the 90° transverse ribs.展开更多
Several industrial applications such as electronic devices,heat exchangers,gas turbine blades,etc.need cooling processes.The internal cooling technique is proper for some applications.In the present work,computational...Several industrial applications such as electronic devices,heat exchangers,gas turbine blades,etc.need cooling processes.The internal cooling technique is proper for some applications.In the present work,computational simulations were made using ANSYS CFX to predict the improvements of internal heat transfer in the rectangular ribbed channel using different coolants.Several coolants such as air,steam,air/mist and steam/mist were investigated.The shear stress transport model(SST)is selected by comparing the standard k-ωand Omega Reynolds Stress(ωRS)turbulence models with experimental results.The results indicate that the heat transfer coefficients are enhanced in the ribbed channel while injecting small amounts of mist.The heat transfer coefficients of air/mist,steam and steam/mist increase by 12.5%,49.5%and 107%over that of air,respectively.Furthermore,in comparison to air,the air/mist heat transfer coefficient enhances by about 1.05 to 1.14 times when the mist mass fraction increases from 2%to 8%,respectively.The steam/mist heat transfer coefficient increases by about 1.12 to 1.27 times higher than that of steam over the considered range of mist mass fraction.展开更多
To deal with the aerodynamic heating on the aircraft surface,a potential solution is to utilize liquid cooling via the channels in part of the fuselage.This is a typical problem of flow and heat transfer in channels w...To deal with the aerodynamic heating on the aircraft surface,a potential solution is to utilize liquid cooling via the channels in part of the fuselage.This is a typical problem of flow and heat transfer in channels with unilaterally-heated surfaces.The enhancement of heat transfer in the channel is significant due to the high heating flux.The optimal velocity and temperature fields are obtained first based on the field synergy optimization method.Four rib configurations are proposed to produce the longitudinal vortices suggested by the optimal velocity field.The flow and heat transfer characteristics of different rib configurations are obtained by numerical simulation.The numerical simulations show that the heat transfer enhancement of the rib configurations are quite different,but the pressure drop increases similarly in the laminar flow range of Re = 500–1500.The mechanism of heat transfer enhancement with the single/double-inclined ribs for the unilaterally-heated channel is analysed.The best enhancement of geometric parameter among the investigated parameters such as the angle,length,radius and the spacing of the ribs is obtained.展开更多
For the simplified model of the internal cooling passage in the turbine blade of an aero-engine,the present study applies a newly developed turbulence modeling method,very-large eddy simulation(VLES),for analyzing rot...For the simplified model of the internal cooling passage in the turbine blade of an aero-engine,the present study applies a newly developed turbulence modeling method,very-large eddy simulation(VLES),for analyzing rotational effects on the characteristics of complex turbulent flow.For comparison,not only are the delayed detached eddy simulation(DDES)method(recognized as one of the most popular hybrid Reynolds-averaged Navier-Stokes–large eddy simulation(RANS-LES)methods)and the LES method used with the same numerical setup,but also three RANS turbulence models,including the k-ωshear stress transport(SST),standard k-ε,and Reynolds stress models,are applied to analyze the flow structure in the ribbed channel(whether rotating or stationary).Complex turbulent flows in a square ribbed channel at high Reynolds number of 100000 in the stationary state and different rotational numbers(Ro)between 0.1 and 0.4 are simulated and analyzed in detail.The comparisons show that when compared with the experimental data the VLES method works best in both the stationary and rotating states.It can capture unsteady flow characteristics such as wall shear layer separation and the vortex structure resulting from the rib disturbance.The DDES method can only capture the larger-scale vortex structures,and its predictions of the time-averaged velocity differ considerably from experiments,especially in the stationary state.With a relatively coarse grid,satisfactory prediction cannot be achieved in either rotating or stationary state by the LES method with wall-adapting local eddy-viscosity(WALE)and dynamic Smagorinsky models.The three RANS models perform poorly in both the stationary and rotating states.The results demonstrate the advantages of the VLES method in analyzing the unsteady flow characteristics in the ribbed channel at high Reynolds numbers for both stationary and rotating conditions.On that basis,the study uses the VLES method to analyze the flow evolution under different rotational numbers,and the rotational effects on the fluid mechanisms are analyzed.展开更多
基金supported by the National Natural Science Foundation of China(No.51276088)
文摘The heat transfer and pressure loss characteristics on a square channel with two opposite surfaces roughened by high blockage ratio ribs are measured by systematic experiments.Reynolds numbers studied in the channel range from 1 400 to 8 000.The ratios of rib height to hydraulic diameter (e/D) are 0.2and 0.33,respectively.The ratio of rib spacing to height (P/e) ranges from 5to 15.The rib orientations in the opposite surfaces are symmetrical and staggered arrangements.The results show that the heat transfer coefficients are increased with the increase of rib height and Reynolds number,though at the cost of higher pressure losses.When the rib spacing to height ratio is 10,it keeps the highest heat transfer coefficient in three kinds of rib spacing to height ratios 5,10 and 15.The heat transfer coefficient of symmetrical arrangement ribs is higher than that of the staggered arrangement ribs,but the pressure loss of the symmetrical arrangement ribs is larger than that of the staggered arrangement ribs.
基金Supported by the Guangdong Science and Technology Project (2008A01070003)
文摘Experimental and numerical investigations have been conducted to study turbulent flow of water and heat transfer characteristics in a rectangular channel with discontinuous crossed ribs and grooves.The tests investigated the overall heat transfer performance and friction factor in ribbed and ribbed-grooved channels with rib angle of 30°.The experimental results show that the overall thermo-hydraulic performance for ribbed-grooved channel is increased by 10%-13.6% when compared to ribbed channel.The investigation on the effects of different rib angles and rib pitches on heat transfer characteristics and friction factor in ribbed-grooved channel was carried out using Fluent with SST(shear-stress transport) k-ω turbulence model.The numerical results indicate that the case for rib angle of 45° shows the best overall thermo-hydraulic performance,about 18%-36% higher than the case for rib angle of 0°.In addition,the flow patterns and local heat transfer characteristics for ribbed and ribbed-grooved channels based on the numerical simulation were also analyzed to reveal the mechanism of heat transfer enhancement.
文摘A numerical investigation has been carried out to examine turbulent flow and heat transfer characteristics in a three-dimensional ribbed square channels. Fluent 6.3 CFD code has been used. The governing equations are discretized by the second order upwind differencing scheme, decoupling with the SIMPLE (semi-implicit method for pressure linked equations) algorithm and are solved using a finite volume approach. The fluid flow and heat transfer characteristics are presented for the Reynolds numbers based on the channel hydraulic diameter ranging from 104 to 4 ′ 104. The effects of rib shape and orientation on heat transfer and pressure drop in the channel are investigated for six different rib configurations. Rib arrays of 45° inclined and 45° V-shaped are mounted in inline and staggered arrangements on the lower and upper walls of the channel. In addition, the performance of these ribs is also compared with the 90° transverse ribs.
基金Supported by the China Scholarship Council (CSC) under Grant No.2011BSZF88
文摘Several industrial applications such as electronic devices,heat exchangers,gas turbine blades,etc.need cooling processes.The internal cooling technique is proper for some applications.In the present work,computational simulations were made using ANSYS CFX to predict the improvements of internal heat transfer in the rectangular ribbed channel using different coolants.Several coolants such as air,steam,air/mist and steam/mist were investigated.The shear stress transport model(SST)is selected by comparing the standard k-ωand Omega Reynolds Stress(ωRS)turbulence models with experimental results.The results indicate that the heat transfer coefficients are enhanced in the ribbed channel while injecting small amounts of mist.The heat transfer coefficients of air/mist,steam and steam/mist increase by 12.5%,49.5%and 107%over that of air,respectively.Furthermore,in comparison to air,the air/mist heat transfer coefficient enhances by about 1.05 to 1.14 times when the mist mass fraction increases from 2%to 8%,respectively.The steam/mist heat transfer coefficient increases by about 1.12 to 1.27 times higher than that of steam over the considered range of mist mass fraction.
基金supported by discipline construction fund of Tsinghua University。
文摘To deal with the aerodynamic heating on the aircraft surface,a potential solution is to utilize liquid cooling via the channels in part of the fuselage.This is a typical problem of flow and heat transfer in channels with unilaterally-heated surfaces.The enhancement of heat transfer in the channel is significant due to the high heating flux.The optimal velocity and temperature fields are obtained first based on the field synergy optimization method.Four rib configurations are proposed to produce the longitudinal vortices suggested by the optimal velocity field.The flow and heat transfer characteristics of different rib configurations are obtained by numerical simulation.The numerical simulations show that the heat transfer enhancement of the rib configurations are quite different,but the pressure drop increases similarly in the laminar flow range of Re = 500–1500.The mechanism of heat transfer enhancement with the single/double-inclined ribs for the unilaterally-heated channel is analysed.The best enhancement of geometric parameter among the investigated parameters such as the angle,length,radius and the spacing of the ribs is obtained.
基金the National Natural Science Foundation of China(No.91841302)the Jiangsu Provincial Natural Science Foundation of China(No.BK20200069)+1 种基金the Shanghai Academy of Spaceflight Technology(SAST)Innovation Fundthe Fundamental Research Funds for the Central Universities,China。
文摘For the simplified model of the internal cooling passage in the turbine blade of an aero-engine,the present study applies a newly developed turbulence modeling method,very-large eddy simulation(VLES),for analyzing rotational effects on the characteristics of complex turbulent flow.For comparison,not only are the delayed detached eddy simulation(DDES)method(recognized as one of the most popular hybrid Reynolds-averaged Navier-Stokes–large eddy simulation(RANS-LES)methods)and the LES method used with the same numerical setup,but also three RANS turbulence models,including the k-ωshear stress transport(SST),standard k-ε,and Reynolds stress models,are applied to analyze the flow structure in the ribbed channel(whether rotating or stationary).Complex turbulent flows in a square ribbed channel at high Reynolds number of 100000 in the stationary state and different rotational numbers(Ro)between 0.1 and 0.4 are simulated and analyzed in detail.The comparisons show that when compared with the experimental data the VLES method works best in both the stationary and rotating states.It can capture unsteady flow characteristics such as wall shear layer separation and the vortex structure resulting from the rib disturbance.The DDES method can only capture the larger-scale vortex structures,and its predictions of the time-averaged velocity differ considerably from experiments,especially in the stationary state.With a relatively coarse grid,satisfactory prediction cannot be achieved in either rotating or stationary state by the LES method with wall-adapting local eddy-viscosity(WALE)and dynamic Smagorinsky models.The three RANS models perform poorly in both the stationary and rotating states.The results demonstrate the advantages of the VLES method in analyzing the unsteady flow characteristics in the ribbed channel at high Reynolds numbers for both stationary and rotating conditions.On that basis,the study uses the VLES method to analyze the flow evolution under different rotational numbers,and the rotational effects on the fluid mechanisms are analyzed.