Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, toget...Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, together with magnesium nitrate hexahydrate pellets, were suspended in propan-2-ol inside an EPD cell. The electrodes, placed 1.2 cm apart, were partially immersed in the suspension and a DC potential applied across them. Key EPD process parameters, which include applied DC electric field, deposition time and solid concentration in suspension, were optimized through visual inspection and from UV-Vis-NIR spectrophotometer spectra. The highest (55%) transmittance was obtained for films with deposition time of 90 s, powder concentration of 0.01 g/40 mL, and 35 V DC (direct current) voltage. XRD micrographs confirmed that TiO2 and Nb2O5 particles were presented in the composite film. SEM (scanning electron microscope) micrographs of the composite electrode thin films showed that porous films of high quality with well controlled morphology were deposited by using the EPD technique.展开更多
The nanocomposite films were prepared by poly(ethylene oxide), PEO, intercalation in V2O5 xero-gel in sol-gel. The synthesis and state of the films are investigated by the XRD, IR, SEM, etc. The results show that V2O5...The nanocomposite films were prepared by poly(ethylene oxide), PEO, intercalation in V2O5 xero-gel in sol-gel. The synthesis and state of the films are investigated by the XRD, IR, SEM, etc. The results show that V2O5, xerogel is a layered structure which arranges in c-direction. The mterlayer distance of V2O5 xerogel increases remarkably when PEO is intercalated in V2O5 xero-gel interlayer. PEO has strong interaction with V2O5 host. The surface of the films is homogeneous without holes and cracks.展开更多
V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for N...V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.展开更多
Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displ...Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.展开更多
V2O5 films were prepared on silicon wafers by DC magnetron sputtering and post-annealing under various conditions. The influence of depositing and post-annealing temperatures on microstructure of V2O5 films was studie...V2O5 films were prepared on silicon wafers by DC magnetron sputtering and post-annealing under various conditions. The influence of depositing and post-annealing temperatures on microstructure of V2O5 films was studied by XRD and Raman scattering measurements. The results reveal that sputtered V2O5 films show preferred growth orientation along (001) planes and the c-axis is perpendicular to the silicon substrate surface. It is interesting to find that both the V2O5 film deposited at temperature of 511 ℃ and the one annealed at 500 ℃ exhibit desirable layer-type structure of orthorhombic symmetry. Such layer-typed V2O5 films are promising candidates for cathodes of rechargeable lithium or magnesium thin-film batteries.展开更多
A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. ...A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. A special heat treatment was used in the calcination to maintain the large surface area and high dispersion of vanadium species. This catalyst was compared to a common V2O5-TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new catalyst has a surface area of 117.7 m^2/g, which was 38% higher than the traditional V2O5-TiO2 catalyst. The selective catalytic reduction(SCR) performance demonstrated that the new catalyst had a wider temperature window and better N2 selectivity compared to the traditional one. The NO conversion was 80% from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V-O-V linkages on the catalyst prepared by the traditional method. The amount of V-O-Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X-ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.展开更多
The V 2O 5 sol was fabricated by ultra fast quenching.The vanadium with low valence (V 4+ ) was found in V 2O 5 xerogel films by XPS analysis.The technology of oxygen top blown was applied to analyze the XPS...The V 2O 5 sol was fabricated by ultra fast quenching.The vanadium with low valence (V 4+ ) was found in V 2O 5 xerogel films by XPS analysis.The technology of oxygen top blown was applied to analyze the XPS spectrum difference of V 2O 5 xerogel when the powder of V 2O 5 was melting in air or in oxygen atmosphere.The results show that the different melting atmosphere has certain influences on the chemical valence of V 2O 5 xerogel.展开更多
Novel nano-structured films of V2O5 are prepared by pulsed laser deposition method. Nanoscaled V2O5 ridges lie on SrTiO3 substrate and construct into grid-textured structures. Structural properties of the films have b...Novel nano-structured films of V2O5 are prepared by pulsed laser deposition method. Nanoscaled V2O5 ridges lie on SrTiO3 substrate and construct into grid-textured structures. Structural properties of the films have been analyzed by scanning electron microscope, X-ray diffraction and transmission electron microscope. The films have enlarged surface-to-volume ratio due to the ridge-channel structure which makes them applicable to gas sensing. Therefore, gas sensors based on the V2O5 films have been assembled which present reliable sensing properties to gaseous acetone, and ethanol at room temperature. The physical-chemical reactions between adsorbed O2^– and testing gases are the possible reason for this property.展开更多
The selective catalytic reduction of NOV with NH3 (NH3-SCR) is a very effective technology to control the emission of NOA, and the thermal stability of NH3-SCR catalyst is very important for removal of NOV from diesel...The selective catalytic reduction of NOV with NH3 (NH3-SCR) is a very effective technology to control the emission of NOA, and the thermal stability of NH3-SCR catalyst is very important for removal of NOV from diesel engines. In this work, V2O5/WO3-TiO2 (VWT) and SiO2- doped V2O5/WO3-TiO2 (VWTSi10)) catalysts were prepared by impregnation method and characterized by Brunauer- Emmett-Teller (BET), X-ray diffraction (XRD), Raman, temperature programmed reduction by hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption by ammonia (NH3- TPD). The doping of SiO2 promotes the thermal stability of V2O5/WO3-TiO? for NH3-SCR significantly. After calcination at 650 °C for 50 h, the operation window of 10% SiO2-doped V2O5/WO3-TiO2 is 220-480 °C, while the maximum NOV conversion on V2O5/WO3-TiO2 is about 77%. The presenee of SiO2 obviously blocks the transformation of TiO2 from anatase to rutile and stabilizes the dispersion of VOv and WO3 on the surface. It is available for the existence of V44 and the amount of surface acid sites increases, which inhabits the NH3 oxidation at the high temperature range and promotes NH3-SCR activity.展开更多
文摘Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, together with magnesium nitrate hexahydrate pellets, were suspended in propan-2-ol inside an EPD cell. The electrodes, placed 1.2 cm apart, were partially immersed in the suspension and a DC potential applied across them. Key EPD process parameters, which include applied DC electric field, deposition time and solid concentration in suspension, were optimized through visual inspection and from UV-Vis-NIR spectrophotometer spectra. The highest (55%) transmittance was obtained for films with deposition time of 90 s, powder concentration of 0.01 g/40 mL, and 35 V DC (direct current) voltage. XRD micrographs confirmed that TiO2 and Nb2O5 particles were presented in the composite film. SEM (scanning electron microscope) micrographs of the composite electrode thin films showed that porous films of high quality with well controlled morphology were deposited by using the EPD technique.
基金This project was supported by National Natural Science Foundation of China (Grant No.59802009 ) and Hubei Province Natural Science Foundation(Grant No. 99J053).
文摘The nanocomposite films were prepared by poly(ethylene oxide), PEO, intercalation in V2O5 xero-gel in sol-gel. The synthesis and state of the films are investigated by the XRD, IR, SEM, etc. The results show that V2O5, xerogel is a layered structure which arranges in c-direction. The mterlayer distance of V2O5 xerogel increases remarkably when PEO is intercalated in V2O5 xero-gel interlayer. PEO has strong interaction with V2O5 host. The surface of the films is homogeneous without holes and cracks.
基金supported by the National Natural Science Foundation of China (51372137)the National High Technology Research and Development Program of China (863 Program,2015AA034603)~~
文摘V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.
文摘Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.
基金[This work was financially supported by the National Natural Science Foundation of China (No.50402024)Natural Science Foundation of Gansu Province (No.ZS 041-A25-033).
文摘V2O5 films were prepared on silicon wafers by DC magnetron sputtering and post-annealing under various conditions. The influence of depositing and post-annealing temperatures on microstructure of V2O5 films was studied by XRD and Raman scattering measurements. The results reveal that sputtered V2O5 films show preferred growth orientation along (001) planes and the c-axis is perpendicular to the silicon substrate surface. It is interesting to find that both the V2O5 film deposited at temperature of 511 ℃ and the one annealed at 500 ℃ exhibit desirable layer-type structure of orthorhombic symmetry. Such layer-typed V2O5 films are promising candidates for cathodes of rechargeable lithium or magnesium thin-film batteries.
基金supported by the National Natural Science Foundation of China(21325731,21221004)the National High Technology Research and Development Program of China(863 Program)the State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex
文摘A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. A special heat treatment was used in the calcination to maintain the large surface area and high dispersion of vanadium species. This catalyst was compared to a common V2O5-TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new catalyst has a surface area of 117.7 m^2/g, which was 38% higher than the traditional V2O5-TiO2 catalyst. The selective catalytic reduction(SCR) performance demonstrated that the new catalyst had a wider temperature window and better N2 selectivity compared to the traditional one. The NO conversion was 80% from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V-O-V linkages on the catalyst prepared by the traditional method. The amount of V-O-Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X-ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.
文摘The V 2O 5 sol was fabricated by ultra fast quenching.The vanadium with low valence (V 4+ ) was found in V 2O 5 xerogel films by XPS analysis.The technology of oxygen top blown was applied to analyze the XPS spectrum difference of V 2O 5 xerogel when the powder of V 2O 5 was melting in air or in oxygen atmosphere.The results show that the different melting atmosphere has certain influences on the chemical valence of V 2O 5 xerogel.
基金supported by the National Key Project for Basic Research(Grant No.2014CB921002)the National Natural Science Foundation of China(Grant No.11374225)the Research Grant Council of Hong Kong(Grant No.702112)
文摘Novel nano-structured films of V2O5 are prepared by pulsed laser deposition method. Nanoscaled V2O5 ridges lie on SrTiO3 substrate and construct into grid-textured structures. Structural properties of the films have been analyzed by scanning electron microscope, X-ray diffraction and transmission electron microscope. The films have enlarged surface-to-volume ratio due to the ridge-channel structure which makes them applicable to gas sensing. Therefore, gas sensors based on the V2O5 films have been assembled which present reliable sensing properties to gaseous acetone, and ethanol at room temperature. The physical-chemical reactions between adsorbed O2^– and testing gases are the possible reason for this property.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300)the National High Technology Research and Development Program of China (No. 2015AA034603)+2 种基金the National Natural Science Foundation of China (Nos. 21333003 and 21571061)the "Shu Guang" Project of the Shanghai Municipal Education Commission (No. 12SG29)the Commission of Science and Technology of Shanghai Municipality (No. 15DZ1205305)
文摘The selective catalytic reduction of NOV with NH3 (NH3-SCR) is a very effective technology to control the emission of NOA, and the thermal stability of NH3-SCR catalyst is very important for removal of NOV from diesel engines. In this work, V2O5/WO3-TiO2 (VWT) and SiO2- doped V2O5/WO3-TiO2 (VWTSi10)) catalysts were prepared by impregnation method and characterized by Brunauer- Emmett-Teller (BET), X-ray diffraction (XRD), Raman, temperature programmed reduction by hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption by ammonia (NH3- TPD). The doping of SiO2 promotes the thermal stability of V2O5/WO3-TiO? for NH3-SCR significantly. After calcination at 650 °C for 50 h, the operation window of 10% SiO2-doped V2O5/WO3-TiO2 is 220-480 °C, while the maximum NOV conversion on V2O5/WO3-TiO2 is about 77%. The presenee of SiO2 obviously blocks the transformation of TiO2 from anatase to rutile and stabilizes the dispersion of VOv and WO3 on the surface. It is available for the existence of V44 and the amount of surface acid sites increases, which inhabits the NH3 oxidation at the high temperature range and promotes NH3-SCR activity.