DUS testing technique used for plant variety protection was reviewed in the paper, and some suggestions were made on how to establish the appropriate technology system in China. Meanwhile, the potential exploitation o...DUS testing technique used for plant variety protection was reviewed in the paper, and some suggestions were made on how to establish the appropriate technology system in China. Meanwhile, the potential exploitation of the technique was discussed.展开更多
Variety identification plays an important role in protecting the intellectual property of varieties,ensuring seed quality,and encouraging breeding innovation.Currently,morphological evaluation in the field,such as dis...Variety identification plays an important role in protecting the intellectual property of varieties,ensuring seed quality,and encouraging breeding innovation.Currently,morphological evaluation in the field,such as distinctness,uniformity,and stability(DUS)testing,and DNA fingerprinting in the laboratory using molecular markers are two dominant methods used for variety identification.Few studies have compared the results of these approaches,and the relationship between the two methods is obscure.In this study,134 dominant cucumber varieties were evaluated using 50 DUS testing traits and genotyped by 40 single nucleotide polymorphisms(SNPs).The 40 SNPs were developed in our previous study and arewell suited for variety identification.In the DUS testing,significant positive or negative correlations among 50 DUS traits were observed,and 20 core traits,including 15 fruit traits,were further selected to increase field inspection efficiency.This suggested that fruit shape plays an important role in variety identification.The ratio of fruit length/diameter was themost important trait,explaining 9.2%of the phenotypic variation.In the DNA fingerprinting test,the 40 SNPs were highly polymorphic and could distinguish all of the 134 cucumber varieties,and 14 core SNPs were selected to improve the identification rate.Interestingly,the population structure analysis of 134 cucumber varieties by phenotypic data in the DUS test was in accordance with the genotypic data from the DNA fingerprinting,indicating that all varieties could be divided into the same four subgroups:European type,North China type,South China type,and hybrids of the North China and South China types.Moreover,linear correlativity of distinguishment for each pair of varieties was observed between the DUS test and the DNA fingerprinting.These results indicated that these two methods have good application in future research,especially for the scaled-up analysis of hundreds of varieties.展开更多
Through comparing 13 new rape varieties, we found Xiangzayou 631, Huaxiangyou 16 and Xiangzayou 763 al had strong resistance to Sclerotinia sclero-tiorum, excellent comprehensive characters and high yield. They could ...Through comparing 13 new rape varieties, we found Xiangzayou 631, Huaxiangyou 16 and Xiangzayou 763 al had strong resistance to Sclerotinia sclero-tiorum, excellent comprehensive characters and high yield. They could be planted in planting areas of one-season rice and dry-land rape in Leiyang. Changzayou 3, Xi-angzayou 4, Zhongyou 112 and Fengyou 520 had the advantage of short growth period and al matured around April 25th. This would not affect the two-season rice production in Leiyang. Therefore, they were suitable for being promoted in rice-rice-oil triple-cropping areas.展开更多
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st...Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.展开更多
Boehmeria nivea var.strigosa Zeng Y.Wu&Y.Zhao,a new variety of B.nivea(Urticaceae)from Southwest China,is here described based on evidence from morphology and molecular phylogeny.This new variety is mainly charact...Boehmeria nivea var.strigosa Zeng Y.Wu&Y.Zhao,a new variety of B.nivea(Urticaceae)from Southwest China,is here described based on evidence from morphology and molecular phylogeny.This new variety is mainly characterized by its green abaxial leaf blade,partly connate stipules,and densely patent strigose hairs on stems and potioles.The phylogenetic analysis based on rbc L,nrDNA and rbc L+nrDNA datasets,revealed that all individuals of B.nivea var.strigosa formed a monophyletic group.The conservation status of B.nivea var.strigosa is assessed as“Near Threatened”(NT)according to IUCN evaluation criteria.The discovery of this new variety is not only crucial for the taxonomy of ramie,but also provides reference for the exploration and utilization of ramie.展开更多
The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an ...The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.展开更多
Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT...Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.展开更多
Background:To confirm that the four constitutions of the Korean medicine is closely related to the intestinal flora,and explore the influence of specific intestinal microbes on these four populations.Methods:We collec...Background:To confirm that the four constitutions of the Korean medicine is closely related to the intestinal flora,and explore the influence of specific intestinal microbes on these four populations.Methods:We collect stool samples of four different physiques of the Taeeum,Soeum,Taeyang,and Shaoyang.Based on 16S rDNA amplicon sequencing,SPSS 18.0 statistical software and GraphPad Prism 8.0 mapping software,the body weight,body mass index,cholesterol and intestinal microcommunity composition of the four groups were analyzed and compared.Results:The results found that the body weight and body mass index of the Taeeum group were significantly higher than the Shaoyang group and the Soeum group,the body weight,cholesterol and body mass index of the Taeyang group were significantly higher than the Soeum Group.In the analysis of gut microbiota,the richness and diversity of intestinal microorganisms and the abundance ratio of posterior firmicutes to bacteroides were all different in the four populations,and there were 24 gut microbiota with significant differences(P<0.05).Among them,the abundance of[Eubacterium]coprostanoligenes group of Taeyang people,Taeeum people,Shaoyang people,and Soeum people were 3.71,9.62,9.36 and 9.33,respectively.Conclusion:[Eubacterium]coprostanoligenes group may be related to the differences in cholesterol content of the four populations.Similarly,the firmicutes/bacteroidetes abundance ratio may also be related to the differences in body weight,blood glucose and blood lipid among the four groups.展开更多
Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representat...Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.展开更多
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
Before farmers can benefit from new improved maize varieties with novel genetic information, new maize varieties have to undergo performance testing, registration and approval. The registration procedures require that...Before farmers can benefit from new improved maize varieties with novel genetic information, new maize varieties have to undergo performance testing, registration and approval. The registration procedures require that new maize varieties must pass the tests for value for cultivation and use (VCU) and standardized tests for distinctness, uniformity and stability (DUS). To meet the minimum requirements for variety release, public and private sector maize breeding programs routinely assemble breeding nurseries and evaluate variety performance in National and Regional Performance Trials (NRPT) with the objective of generating important agronomic data to identify the best maize varieties for release. In spite of intensive variety evaluation in regional and national trials, only few maize varieties have been registered and released annually in sub-Saharan Africa (SSA) denying farmers access to new improved varieties. The purpose of this study was to identify constraints hampering the registration and release of elite maize gennplasm and make recommends on how to quicken the deployment of elite germplasm to smallholders' farmers. A survey was conducted on the varietal testing and release systems in 14 selected countries (Angola, Benin, Ethiopia, Malawi, Ghana, Mali, Mozambique, Nigeria, Tanzania, Kenya, South Africa, Uganda, Zambia, and Zimbabwe) in SSA. The results from the study show that regulations on variety testing and release procedures in the various countries are overlapping and rigid hindering the deployment and commercialization of new improved maize germplasm. The study also showed that varietal release rates fluctuated between countries with South Africa having the highest number of varietal release rates per year and some countries failing to release a single variety per year.展开更多
To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening m...To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening model based on the genetic algorithm(GA)and implemented in a software tool,Loci Scan.Ratio-based variety discrimination power provided the largest optimization space among multiple fitness functions.Among GA parameters,an increase in population size and generation number enlarged optimization depth but also calculation workload.Exhaustive algorithm afforded the same optimization depth as GA but vastly increased calculation time.In comparison with two other software tools,Loci Scan accommodated missing data,reduced calculation time,and offered more fitness functions.In large datasets,the sample size of training data exerted the strongest influence on calculation time,whereas the marker size of training data showed no effect,and target marker number had limited effect on analysis speed.展开更多
In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses...In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.展开更多
A field experiment was carried out to determine the effect of variety and plant spacing on yield and growth of groundnuts. The field experiment was laid in a 3 × 3 factorial experiment in a Randomized Complete Bl...A field experiment was carried out to determine the effect of variety and plant spacing on yield and growth of groundnuts. The field experiment was laid in a 3 × 3 factorial experiment in a Randomized Complete Block Design (RCBD) with three (3) replications. The factor A included three (3) groundnut varieties (Nkatie Sari, Sum Nutt 22 and Yenyawoso) and Factor B was the three (3) spacing of 30 cm × 15 cm, 30 cm × 30 cm and 30 cm × 40 cm. All recommended agronomic practices were followed. Data was collected from eight (8) tagged plants. Growth data were recorded on plant height, number of branches, number of leaves, and the number of flowers while yield data were collected on the number of flowers, number of pods per plant, 100 seeds weight and the pod yield (kg/ha). The plant spacing significantly influenced (P < 0.05) the growth and yield parameters. Groundnut grown at a spacing of 30 cm × 15 cm produced the maximum plant height, whereas the maximum number of leaves, number of branches and number of flowers were produced from 30 cm × 40 cm. Yenyawoso variety with a wider plant spacing performed better vegetatively among all the varieties. The Yenyawoso variety produced the highest number of pods, 100 seeds weight and pod yield as compared to the other varieties. Also, Yenyawoso at 30 cm × 40 cm spacing and Nkatie Sari at 30 cm × 15 cm spacing produced the maximum pod yield.展开更多
The study was conducted to determine the influence of gratering and fermentation parameters on the physicochemical quality of starch obtained from two cassava varieties in Sierra Leone (i.e., SLICASS 11 and SLICASS 6)...The study was conducted to determine the influence of gratering and fermentation parameters on the physicochemical quality of starch obtained from two cassava varieties in Sierra Leone (i.e., SLICASS 11 and SLICASS 6). Fresh cassava roots harvested from the Department of Agricultural Engineering were peeled, washed and grated before fermentation and starch extraction. Fermentation was carried out under separate aerobic and anaerobic conditions for a period of Seven days. Physicochemical analyses were conducted at the Postharvest Food and Bioprocess Engineering Laboratory of the Department of Agricultural and Bio-System Engineering, Njala University to determine the solubility, water absorption capacity and swelling power of starch extracts obtained from various experimental treatments. Fermentation method and duration had significant effects on the solubility, water absorption capacity (WAC) and swelling power (SP) of starch extracts. Maximum solubility and WAC were recorded on the fifth day, for both cassava varieties tested, with apparent significant difference resulting from the two gratering bands (i.e., with 1.5-inch nail hole and 4-inch nail hole sizes, respectively). While swelling power increased consistently with temperature for starch obtained from SLICASS-11 variety, an irregular pattern was observed for SLICASS-6 variety. A multiple correlation analysis proposes a significant and weak correlation between temperature, WAC (+0.150) and swelling power (+0.048). Also multiple correlation analyses suggest a significant correlation between fermentation period, the functional properties of starch extracts obtained from both fermentation methods and cassava varieties (i.e., solubility (−0.226), water absorption capacity (+0.301) and swelling power (+0.329)).展开更多
In situ inflow and outflow permeability tests with the BAT probe at SarapuíII soft clay test site are presented.A description of the BAT permeability test is provided,discussing its advantages and shortcomings,es...In situ inflow and outflow permeability tests with the BAT probe at SarapuíII soft clay test site are presented.A description of the BAT permeability test is provided,discussing its advantages and shortcomings,especially in the case of very soft clays under low stresses.Pore pressures were monitored during probe installation and were found to be slightly lower than piezocone u2 pore pressures,consistent with the position of the filter.The role of filter tip saturation was investigated after the usual saturation procedure provided an unsatisfactory pore pressure response during probe installation.Results show that the vacuum saturation procedure provides adequate response during installation and increases the reliability of the coefficient of permeability determination in early measurements.Both inflow and outflow tests yielded similar results,indicating that careful execution of the test can lead to good test repeatability regardless of the loading condition.Various sequences of alternated inflow and outflow tests have yielded similar results,indicating that soil reconsolidation and filter clogging were negligible in the tests performed.Data are presented concerning the relationship between index parameters and the in situ coefficient of permeability for SarapuíII clay,which plot outside the range of existing databases.展开更多
Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount impo...Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount importance in the emerging field of edge AI.One widely used testing method for this purpose is fuzz testing,which detects bugs by inputting random test cases into the target program.However,this process consumes significant time and resources.To improve the efficiency of compiler fuzz testing,it is common practice to utilize test case prioritization techniques.Some researchers use machine learning to predict the code coverage of test cases,aiming to maximize the test capability for the target compiler by increasing the overall predicted coverage of the test cases.Nevertheless,these methods can only forecast the code coverage of the compiler at a specific optimization level,potentially missing many optimization-related bugs.In this paper,we introduce C-CORE(short for Clustering by Code Representation),the first framework to prioritize test cases according to their code representations,which are derived directly from the source codes.This approach avoids being limited to specific compiler states and extends to a broader range of compiler bugs.Specifically,we first train a scaled pre-trained programming language model to capture as many common features as possible from the test cases generated by a fuzzer.Using this pre-trained model,we then train two downstream models:one for predicting the likelihood of triggering a bug and another for identifying code representations associated with bugs.Subsequently,we cluster the test cases according to their code representations and select the highest-scoring test case from each cluster as the high-quality test case.This reduction in redundant testing cases leads to time savings.Comprehensive evaluation results reveal that code representations are better at distinguishing test capabilities,and C-CORE significantly enhances testing efficiency.Across four datasets,C-CORE increases the average of the percentage of faults detected(APFD)value by 0.16 to 0.31 and reduces test time by over 50% in 46% of cases.When compared to the best results from approaches using predicted code coverage,C-CORE improves the APFD value by 1.1% to 12.3% and achieves an overall time-saving of 159.1%.展开更多
Objective:Serological tests are widely used for scrub typhus diagnosis;however,their limitations are evident.This study aims to assess their practical value in clinical settings.Methods:We analyzed the data of adult p...Objective:Serological tests are widely used for scrub typhus diagnosis;however,their limitations are evident.This study aims to assess their practical value in clinical settings.Methods:We analyzed the data of adult patients with suspected scrub typhus who visited a tertiary care hospital in the Republic of Korea from September to December from 2019 to 2021.The included patients had an acute fever and at least one of the following ten secondary findings:myalgia,skin rash,eschar,headache,thrombocytopenia,increased liver enzyme levels,lymphadenopathy,hepatomegaly,splenomegaly,and pleural effusion.The diagnoses were grouped as scrub typhus or other diseases by two infectious disease physicians.Results:Among 136 patients who met the eligibility criteria,109 had scrub typhus and 27 had different diseases.Single and paired total antibodies using immunofluorescence assay(IFA),and total antibodies using immunochromatography-based rapid diagnostic testing(ICT)were measured in 98%,22%,and 75%of all patients,respectively.Confirmation using paired samples for scrub typhus was established at a median of 11[interquartile range(IQR)10-16]days following the first visit.Among the 82 admitted patients,the median admission time was 9(IQR 7-13)days.According to IFA,58(55%)patients with scrub typhus had total immunoglobulin titers≥1:320,while 23(85%)patients with other disease had titers<1:320.Positive ICT results were observed in 64(74%)patients with scrub typhus and 10(67%)patients with other diseases showed negative ICT results.Conclusions:Serological testing for scrub typhus is currently insufficient for decision-making in clinical practice.展开更多
文摘DUS testing technique used for plant variety protection was reviewed in the paper, and some suggestions were made on how to establish the appropriate technology system in China. Meanwhile, the potential exploitation of the technique was discussed.
基金supported by the National Natural Science Foundation of China(Grant No.31972432)Beijing Academy of Agricultural and Forestry Sciences,China(Grant Nos.QNJJ20190901,KJCX20200113,JKZX202207),Young Top Talents of the National High-level Talents Special Support Program.
文摘Variety identification plays an important role in protecting the intellectual property of varieties,ensuring seed quality,and encouraging breeding innovation.Currently,morphological evaluation in the field,such as distinctness,uniformity,and stability(DUS)testing,and DNA fingerprinting in the laboratory using molecular markers are two dominant methods used for variety identification.Few studies have compared the results of these approaches,and the relationship between the two methods is obscure.In this study,134 dominant cucumber varieties were evaluated using 50 DUS testing traits and genotyped by 40 single nucleotide polymorphisms(SNPs).The 40 SNPs were developed in our previous study and arewell suited for variety identification.In the DUS testing,significant positive or negative correlations among 50 DUS traits were observed,and 20 core traits,including 15 fruit traits,were further selected to increase field inspection efficiency.This suggested that fruit shape plays an important role in variety identification.The ratio of fruit length/diameter was themost important trait,explaining 9.2%of the phenotypic variation.In the DNA fingerprinting test,the 40 SNPs were highly polymorphic and could distinguish all of the 134 cucumber varieties,and 14 core SNPs were selected to improve the identification rate.Interestingly,the population structure analysis of 134 cucumber varieties by phenotypic data in the DUS test was in accordance with the genotypic data from the DNA fingerprinting,indicating that all varieties could be divided into the same four subgroups:European type,North China type,South China type,and hybrids of the North China and South China types.Moreover,linear correlativity of distinguishment for each pair of varieties was observed between the DUS test and the DNA fingerprinting.These results indicated that these two methods have good application in future research,especially for the scaled-up analysis of hundreds of varieties.
文摘Through comparing 13 new rape varieties, we found Xiangzayou 631, Huaxiangyou 16 and Xiangzayou 763 al had strong resistance to Sclerotinia sclero-tiorum, excellent comprehensive characters and high yield. They could be planted in planting areas of one-season rice and dry-land rape in Leiyang. Changzayou 3, Xi-angzayou 4, Zhongyou 112 and Fengyou 520 had the advantage of short growth period and al matured around April 25th. This would not affect the two-season rice production in Leiyang. Therefore, they were suitable for being promoted in rice-rice-oil triple-cropping areas.
文摘Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.
文摘Boehmeria nivea var.strigosa Zeng Y.Wu&Y.Zhao,a new variety of B.nivea(Urticaceae)from Southwest China,is here described based on evidence from morphology and molecular phylogeny.This new variety is mainly characterized by its green abaxial leaf blade,partly connate stipules,and densely patent strigose hairs on stems and potioles.The phylogenetic analysis based on rbc L,nrDNA and rbc L+nrDNA datasets,revealed that all individuals of B.nivea var.strigosa formed a monophyletic group.The conservation status of B.nivea var.strigosa is assessed as“Near Threatened”(NT)according to IUCN evaluation criteria.The discovery of this new variety is not only crucial for the taxonomy of ramie,but also provides reference for the exploration and utilization of ramie.
基金This work was supported by the National Natural Science Foundation of China(Nos.12335007,11835001,11921006,12035001 and 12205340)the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFY13)Gansu Natural Science Foundation(No.22JR5RA123).
文摘The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.
基金supported by the National Research Foundation of Korea(No.2021R1A2B5B03001691).
文摘Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.
基金supported by the National Natural Science Foundation of China(No.81660834).
文摘Background:To confirm that the four constitutions of the Korean medicine is closely related to the intestinal flora,and explore the influence of specific intestinal microbes on these four populations.Methods:We collect stool samples of four different physiques of the Taeeum,Soeum,Taeyang,and Shaoyang.Based on 16S rDNA amplicon sequencing,SPSS 18.0 statistical software and GraphPad Prism 8.0 mapping software,the body weight,body mass index,cholesterol and intestinal microcommunity composition of the four groups were analyzed and compared.Results:The results found that the body weight and body mass index of the Taeeum group were significantly higher than the Shaoyang group and the Soeum group,the body weight,cholesterol and body mass index of the Taeyang group were significantly higher than the Soeum Group.In the analysis of gut microbiota,the richness and diversity of intestinal microorganisms and the abundance ratio of posterior firmicutes to bacteroides were all different in the four populations,and there were 24 gut microbiota with significant differences(P<0.05).Among them,the abundance of[Eubacterium]coprostanoligenes group of Taeyang people,Taeeum people,Shaoyang people,and Soeum people were 3.71,9.62,9.36 and 9.33,respectively.Conclusion:[Eubacterium]coprostanoligenes group may be related to the differences in cholesterol content of the four populations.Similarly,the firmicutes/bacteroidetes abundance ratio may also be related to the differences in body weight,blood glucose and blood lipid among the four groups.
基金supported by China Postdoctoral Science Foundation(No.2023TQ0247)Shenzhen Science and Technology Program(No.JCYJ20220530140602005)+2 种基金the Fundamental Research Funds for the Central Universities(No.2042023kfyq03)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515111071)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(No.GZB20230544).
文摘Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
文摘Before farmers can benefit from new improved maize varieties with novel genetic information, new maize varieties have to undergo performance testing, registration and approval. The registration procedures require that new maize varieties must pass the tests for value for cultivation and use (VCU) and standardized tests for distinctness, uniformity and stability (DUS). To meet the minimum requirements for variety release, public and private sector maize breeding programs routinely assemble breeding nurseries and evaluate variety performance in National and Regional Performance Trials (NRPT) with the objective of generating important agronomic data to identify the best maize varieties for release. In spite of intensive variety evaluation in regional and national trials, only few maize varieties have been registered and released annually in sub-Saharan Africa (SSA) denying farmers access to new improved varieties. The purpose of this study was to identify constraints hampering the registration and release of elite maize gennplasm and make recommends on how to quicken the deployment of elite germplasm to smallholders' farmers. A survey was conducted on the varietal testing and release systems in 14 selected countries (Angola, Benin, Ethiopia, Malawi, Ghana, Mali, Mozambique, Nigeria, Tanzania, Kenya, South Africa, Uganda, Zambia, and Zimbabwe) in SSA. The results from the study show that regulations on variety testing and release procedures in the various countries are overlapping and rigid hindering the deployment and commercialization of new improved maize germplasm. The study also showed that varietal release rates fluctuated between countries with South Africa having the highest number of varietal release rates per year and some countries failing to release a single variety per year.
基金supported by the Scientific and Technological Innovation 2030 Major Project(2022ZD04019)the Science and Technology Innovation Capacity Building Project of BAAFS(KJCX20230303)+1 种基金Hainan Province Science and Technology Special Fund(ZDYF2023XDNY077)the Beijing Scholars Program(BSP041)。
文摘To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening model based on the genetic algorithm(GA)and implemented in a software tool,Loci Scan.Ratio-based variety discrimination power provided the largest optimization space among multiple fitness functions.Among GA parameters,an increase in population size and generation number enlarged optimization depth but also calculation workload.Exhaustive algorithm afforded the same optimization depth as GA but vastly increased calculation time.In comparison with two other software tools,Loci Scan accommodated missing data,reduced calculation time,and offered more fitness functions.In large datasets,the sample size of training data exerted the strongest influence on calculation time,whereas the marker size of training data showed no effect,and target marker number had limited effect on analysis speed.
基金supported by the National Natural Science Foundation of China(Nos.51927807,52074164,42277174,42077267 and 42177130)the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)China University of Mining and Technology(Beijing)Top Innovative Talent Cultivation Fund for Doctoral Students(No.BBJ2023048)。
文摘In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.
文摘A field experiment was carried out to determine the effect of variety and plant spacing on yield and growth of groundnuts. The field experiment was laid in a 3 × 3 factorial experiment in a Randomized Complete Block Design (RCBD) with three (3) replications. The factor A included three (3) groundnut varieties (Nkatie Sari, Sum Nutt 22 and Yenyawoso) and Factor B was the three (3) spacing of 30 cm × 15 cm, 30 cm × 30 cm and 30 cm × 40 cm. All recommended agronomic practices were followed. Data was collected from eight (8) tagged plants. Growth data were recorded on plant height, number of branches, number of leaves, and the number of flowers while yield data were collected on the number of flowers, number of pods per plant, 100 seeds weight and the pod yield (kg/ha). The plant spacing significantly influenced (P < 0.05) the growth and yield parameters. Groundnut grown at a spacing of 30 cm × 15 cm produced the maximum plant height, whereas the maximum number of leaves, number of branches and number of flowers were produced from 30 cm × 40 cm. Yenyawoso variety with a wider plant spacing performed better vegetatively among all the varieties. The Yenyawoso variety produced the highest number of pods, 100 seeds weight and pod yield as compared to the other varieties. Also, Yenyawoso at 30 cm × 40 cm spacing and Nkatie Sari at 30 cm × 15 cm spacing produced the maximum pod yield.
文摘The study was conducted to determine the influence of gratering and fermentation parameters on the physicochemical quality of starch obtained from two cassava varieties in Sierra Leone (i.e., SLICASS 11 and SLICASS 6). Fresh cassava roots harvested from the Department of Agricultural Engineering were peeled, washed and grated before fermentation and starch extraction. Fermentation was carried out under separate aerobic and anaerobic conditions for a period of Seven days. Physicochemical analyses were conducted at the Postharvest Food and Bioprocess Engineering Laboratory of the Department of Agricultural and Bio-System Engineering, Njala University to determine the solubility, water absorption capacity and swelling power of starch extracts obtained from various experimental treatments. Fermentation method and duration had significant effects on the solubility, water absorption capacity (WAC) and swelling power (SP) of starch extracts. Maximum solubility and WAC were recorded on the fifth day, for both cassava varieties tested, with apparent significant difference resulting from the two gratering bands (i.e., with 1.5-inch nail hole and 4-inch nail hole sizes, respectively). While swelling power increased consistently with temperature for starch obtained from SLICASS-11 variety, an irregular pattern was observed for SLICASS-6 variety. A multiple correlation analysis proposes a significant and weak correlation between temperature, WAC (+0.150) and swelling power (+0.048). Also multiple correlation analyses suggest a significant correlation between fermentation period, the functional properties of starch extracts obtained from both fermentation methods and cassava varieties (i.e., solubility (−0.226), water absorption capacity (+0.301) and swelling power (+0.329)).
文摘In situ inflow and outflow permeability tests with the BAT probe at SarapuíII soft clay test site are presented.A description of the BAT permeability test is provided,discussing its advantages and shortcomings,especially in the case of very soft clays under low stresses.Pore pressures were monitored during probe installation and were found to be slightly lower than piezocone u2 pore pressures,consistent with the position of the filter.The role of filter tip saturation was investigated after the usual saturation procedure provided an unsatisfactory pore pressure response during probe installation.Results show that the vacuum saturation procedure provides adequate response during installation and increases the reliability of the coefficient of permeability determination in early measurements.Both inflow and outflow tests yielded similar results,indicating that careful execution of the test can lead to good test repeatability regardless of the loading condition.Various sequences of alternated inflow and outflow tests have yielded similar results,indicating that soil reconsolidation and filter clogging were negligible in the tests performed.Data are presented concerning the relationship between index parameters and the in situ coefficient of permeability for SarapuíII clay,which plot outside the range of existing databases.
文摘Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount importance in the emerging field of edge AI.One widely used testing method for this purpose is fuzz testing,which detects bugs by inputting random test cases into the target program.However,this process consumes significant time and resources.To improve the efficiency of compiler fuzz testing,it is common practice to utilize test case prioritization techniques.Some researchers use machine learning to predict the code coverage of test cases,aiming to maximize the test capability for the target compiler by increasing the overall predicted coverage of the test cases.Nevertheless,these methods can only forecast the code coverage of the compiler at a specific optimization level,potentially missing many optimization-related bugs.In this paper,we introduce C-CORE(short for Clustering by Code Representation),the first framework to prioritize test cases according to their code representations,which are derived directly from the source codes.This approach avoids being limited to specific compiler states and extends to a broader range of compiler bugs.Specifically,we first train a scaled pre-trained programming language model to capture as many common features as possible from the test cases generated by a fuzzer.Using this pre-trained model,we then train two downstream models:one for predicting the likelihood of triggering a bug and another for identifying code representations associated with bugs.Subsequently,we cluster the test cases according to their code representations and select the highest-scoring test case from each cluster as the high-quality test case.This reduction in redundant testing cases leads to time savings.Comprehensive evaluation results reveal that code representations are better at distinguishing test capabilities,and C-CORE significantly enhances testing efficiency.Across four datasets,C-CORE increases the average of the percentage of faults detected(APFD)value by 0.16 to 0.31 and reduces test time by over 50% in 46% of cases.When compared to the best results from approaches using predicted code coverage,C-CORE improves the APFD value by 1.1% to 12.3% and achieves an overall time-saving of 159.1%.
基金the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(grant no.HI22C0306).
文摘Objective:Serological tests are widely used for scrub typhus diagnosis;however,their limitations are evident.This study aims to assess their practical value in clinical settings.Methods:We analyzed the data of adult patients with suspected scrub typhus who visited a tertiary care hospital in the Republic of Korea from September to December from 2019 to 2021.The included patients had an acute fever and at least one of the following ten secondary findings:myalgia,skin rash,eschar,headache,thrombocytopenia,increased liver enzyme levels,lymphadenopathy,hepatomegaly,splenomegaly,and pleural effusion.The diagnoses were grouped as scrub typhus or other diseases by two infectious disease physicians.Results:Among 136 patients who met the eligibility criteria,109 had scrub typhus and 27 had different diseases.Single and paired total antibodies using immunofluorescence assay(IFA),and total antibodies using immunochromatography-based rapid diagnostic testing(ICT)were measured in 98%,22%,and 75%of all patients,respectively.Confirmation using paired samples for scrub typhus was established at a median of 11[interquartile range(IQR)10-16]days following the first visit.Among the 82 admitted patients,the median admission time was 9(IQR 7-13)days.According to IFA,58(55%)patients with scrub typhus had total immunoglobulin titers≥1:320,while 23(85%)patients with other disease had titers<1:320.Positive ICT results were observed in 64(74%)patients with scrub typhus and 10(67%)patients with other diseases showed negative ICT results.Conclusions:Serological testing for scrub typhus is currently insufficient for decision-making in clinical practice.