Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore...Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore the design pattern.However,design patterns are essential to software engineering because they can solve common problems in software design and improve code reuse,readability,extensibility,and reliability.Our Object-oriented Software Construction Course is creative since it aims at cultivating students’object-oriented thinking as well as basic abilities required to construct high-quality,object-oriented software.Specifically,we exploit the 5E teaching principle during the education of this course,and present the whole pipeline in the paper.We also provide one case of the factory pattern to further demonstrate the implementation of the 5E teaching principle in the course.The effect of the 5E teaching principle has also been demonstrated.展开更多
As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distri...As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.展开更多
Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this stu...Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.展开更多
The design of finite element analysis program using object-oriented programming (OOP) techniques is presented. The objects, classes and the subclasses used in the programming are explained. The system of classes libra...The design of finite element analysis program using object-oriented programming (OOP) techniques is presented. The objects, classes and the subclasses used in the programming are explained. The system of classes library of finite element analysis program and Windows-type Graphical User Interfaces by VC + + and its MFC are developed. The reliability, reusability and extensibility of program are enhanced. It is a reference to develop the large-scale, versatile and powerful systems of object-oriented finite element software.展开更多
The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the...The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the inspection. The traditional components of an expert system, such us knowledge base, inference engine and user interface are reconstructed and integrated, based on the Microsoft Foundation Class (MFC) library. To testify the expert system, an inspection example is given at the end of this paper.展开更多
This paper uses three size metrics,which are collectable during the design phase,to analyze the potentially confounding effect of class size on the associations between object-oriented(OO)metrics and maintainability...This paper uses three size metrics,which are collectable during the design phase,to analyze the potentially confounding effect of class size on the associations between object-oriented(OO)metrics and maintainability.To draw as many general conclusions as possible,the confounding effect of class size is analyzed on 127 C++ systems and 113 Java systems.For each OO metric,the indirect effect that represents the distortion of the association caused by class size and its variance for individual systems is first computed.Then,a statistical meta-analysis technique is used to compute the average indirect effect over all the systems and to determine if it is significantly different from zero.The experimental results show that the confounding effects of class size on the associations between OO metrics and maintainability generally exist,regardless of whatever size metric is used.Therefore,empirical studies validating OO metrics on maintainability should consider class size as a confounding variable.展开更多
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
基金supported by Guangdong Hardware and System Teaching and Research Office(Quality Engineeringproject No.HITSZERP22002)+2 种基金Guangdong Province Education Science Planning Project(Higher Education Project,Project No.2022GXJK431)Harbin Institute of Technology(Shenzhen)Course Ideological and Political Project(Project No.HITSZIP21003)Construction Project of Teachers College of Harbin Institute of Technology(Shenzhen)(Project No.HITSZSFXY202201)。
文摘Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore the design pattern.However,design patterns are essential to software engineering because they can solve common problems in software design and improve code reuse,readability,extensibility,and reliability.Our Object-oriented Software Construction Course is creative since it aims at cultivating students’object-oriented thinking as well as basic abilities required to construct high-quality,object-oriented software.Specifically,we exploit the 5E teaching principle during the education of this course,and present the whole pipeline in the paper.We also provide one case of the factory pattern to further demonstrate the implementation of the 5E teaching principle in the course.The effect of the 5E teaching principle has also been demonstrated.
基金National Natural Science Foundation of China(No.41830110)National Key Research Development Program of China(No.2018YFC1503603)+2 种基金Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNR-202106)Water Conservancy Science and Technology Project of Jiangsu Province,China(No.2020061)Natural Science Foundation of Jiangsu Province,China(No.20180779)。
文摘As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.
文摘Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.
文摘The design of finite element analysis program using object-oriented programming (OOP) techniques is presented. The objects, classes and the subclasses used in the programming are explained. The system of classes library of finite element analysis program and Windows-type Graphical User Interfaces by VC + + and its MFC are developed. The reliability, reusability and extensibility of program are enhanced. It is a reference to develop the large-scale, versatile and powerful systems of object-oriented finite element software.
文摘The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the inspection. The traditional components of an expert system, such us knowledge base, inference engine and user interface are reconstructed and integrated, based on the Microsoft Foundation Class (MFC) library. To testify the expert system, an inspection example is given at the end of this paper.
基金The National Natural Science Foundation of China(No.60425206,60633010)
文摘This paper uses three size metrics,which are collectable during the design phase,to analyze the potentially confounding effect of class size on the associations between object-oriented(OO)metrics and maintainability.To draw as many general conclusions as possible,the confounding effect of class size is analyzed on 127 C++ systems and 113 Java systems.For each OO metric,the indirect effect that represents the distortion of the association caused by class size and its variance for individual systems is first computed.Then,a statistical meta-analysis technique is used to compute the average indirect effect over all the systems and to determine if it is significantly different from zero.The experimental results show that the confounding effects of class size on the associations between OO metrics and maintainability generally exist,regardless of whatever size metric is used.Therefore,empirical studies validating OO metrics on maintainability should consider class size as a confounding variable.