As one of the most important uses of the Internet of things (IOT), the intelligent household is becoming more and more popular. There are many fragile nodes in the intelligent household and they are bound to encounter...As one of the most important uses of the Internet of things (IOT), the intelligent household is becoming more and more popular. There are many fragile nodes in the intelligent household and they are bound to encounter some potential risks of hostile attacks, such as eavesdropping, denial of service, error instructs, non-authorized access or fabrication and others. This paper presents a method of design and implement of secure nodes for the intelligent household based on the IOT technology, besides giving the hardware model of nodes, the management of key, the access authentication of network, the transmission of encrypted data, and the alarm based on intrusion detection and other security mechanisms. That is, to improve the security of the based-IOT intelligent household from the viewpoint of nodes security. A test platform is built and the results of simulation prove that the proposed method can effectively improve the security of the intelligent household from access safety and transmission security.展开更多
In recent times,wireless sensor network(WSN)finds their suitability in several application areas,ranging from military to commercial ones.Since nodes in WSN are placed arbitrarily in the target field,node localization...In recent times,wireless sensor network(WSN)finds their suitability in several application areas,ranging from military to commercial ones.Since nodes in WSN are placed arbitrarily in the target field,node localization(NL)becomes essential where the positioning of the nodes can be determined by the aid of anchor nodes.The goal of any NL scheme is to improve the localization accuracy and reduce the localization error rate.With this motivation,this study focuses on the design of Intelligent Aquila Optimization Algorithm Based Node Localization Scheme(IAOAB-NLS)for WSN.The presented IAOAB-NLS model makes use of anchor nodes to determine proper positioning of the nodes.In addition,the IAOAB-NLS model is stimulated by the behaviour of Aquila.The IAOAB-NLS model has the ability to accomplish proper coordinate points of the nodes in the network.For guaranteeing the proficient NL process of the IAOAB-NLS model,widespread experimentation takes place to assure the betterment of the IAOAB-NLS model.The resultant values reported the effectual outcome of the IAOAB-NLS model irrespective of changing parameters in the network.展开更多
Artificial intelligence(AI)techniques have received significant attention among research communities in the field of networking,image processing,natural language processing,robotics,etc.At the same time,a major proble...Artificial intelligence(AI)techniques have received significant attention among research communities in the field of networking,image processing,natural language processing,robotics,etc.At the same time,a major problem in wireless sensor networks(WSN)is node localization,which aims to identify the exact position of the sensor nodes(SN)using the known position of several anchor nodes.WSN comprises a massive number of SNs and records the position of the nodes,which becomes a tedious process.Besides,the SNs might be subjected to node mobility and the position alters with time.So,a precise node localization(NL)manner is required for determining the location of the SNs.In this view,this paper presents a new quantum bird migration optimizer-based NL(QBMA-NL)technique for WSN.The goal of the QBMA-NL approach is for determining the position of unknown nodes in the network by the use of anchor nodes.The QBMA-NL technique is mainly based on the mating behavior of bird species at the time of mating season.In addition,an objective function is derived based on the received signal strength indicator(RSSI)and Euclidean distance from the known to unknown SNs.For demonstrating the improved performance of the QBMA-NL technique,a wide range of simulations take place and the results reported the supreme performance over the recent NL techniques.展开更多
A wireless sensor network(WSN)consists of several tiny sensor nodes to monitor,collect,and transmit the physical information from an environment through the wireless channel.The node failure is considered as one of th...A wireless sensor network(WSN)consists of several tiny sensor nodes to monitor,collect,and transmit the physical information from an environment through the wireless channel.The node failure is considered as one of the main issues in the WSN which creates higher packet drop,delay,and energy consumption during the communication.Although the node failure occurred mostly due to persistent energy exhaustion during transmission of data packets.In this paper,Artificial Neural Network(ANN)based Node Failure Detection(NFD)is developed with cognitive radio for detecting the location of the node failure.The ad hoc on-demand distance vector(AODV)routing protocol is used for transmitting the data from the source node to the base station.Moreover,the Mahalanobis distance is used for detecting an adjacent node to the node failure which is used to create the routing path without any node failure.The performance of the proposed ANN-NFD method is analysed in terms of throughput,delivery rate,number of nodes alive,drop rate,end to end delay,energy consumption,and overhead ratio.Furthermore,the performance of the ANN-NFD method is evaluated with the header to base station and base station to header(H2B2H)protocol.The packet delivery rate of the ANN-NFD method is 0.92 for 150 nodes that are high when compared to the H2B2H protocol.Hence,the ANN-NFD method provides data consistency during data transmission under node and battery failure.展开更多
The pursuit of health has always been the driving force for the advancement of human society,and social development will be profoundly affected by every breakthrough in the medical industry.With the arrival of the inf...The pursuit of health has always been the driving force for the advancement of human society,and social development will be profoundly affected by every breakthrough in the medical industry.With the arrival of the information technology revolution era,artificial intelligence(AI)technology has been rapidly developed.AI has been combined with medicine but it has been less studied with gastric cancer(GC).AI is a new budding star in GC,and its contribution to GC is mainly focused on diagnosis and treatment.For early GC,AI’s impact is not only reflected in its high accuracy but also its ability to quickly train primary doctors,improve the diagnosis rate of early GC,and reduce missed cases.At the same time,it will also reduce the possibility of missed diagnosis of advanced GC in cardia.Furthermore,it is used to assist imaging doctors to determine the location of lymph nodes and,more importantly,it can more effectively judge the lymph node metastasis of GC,which is conducive to the prognosis of patients.In surgical treatment of GC,it also has great potential.Robotic surgery is the latest technology in GC surgery.It is a bright star for minimally invasive treatment of GC,and together with laparoscopic surgery,it has become a common treatment for GC.Through machine learning,robotic systems can reduce operator errors and trauma of patients,and can predict the prognosis of GC patients.Throughout the centuries of development of surgery,the history gradually changes from traumatic to minimally invasive.In the future,AI will help GC patients reduce surgical trauma and further improve the efficiency of minimally invasive treatment of GC.展开更多
Major fields such as military applications,medical fields,weather forecasting,and environmental applications use wireless sensor networks for major computing processes.Sensors play a vital role in emerging technologie...Major fields such as military applications,medical fields,weather forecasting,and environmental applications use wireless sensor networks for major computing processes.Sensors play a vital role in emerging technologies of the 20th century.Localization of sensors in needed locations is a very serious problem.The environment is home to every living being in the world.The growth of industries after the industrial revolution increased pollution across the environment.Owing to recent uncontrolled growth and development,sensors to measure pollution levels across industries and surroundings are needed.An interesting and challenging task is choosing the place to fit the sensors.Many meta-heuristic techniques have been introduced in node localization.Swarm intelligent algorithms have proven their efficiency in many studies on localization problems.In this article,we introduce an industrial-centric approach to solve the problem of node localization in the sensor network.First,our work aims at selecting industrial areas in the sensed location.We use random forest regression methodology to select the polluted area.Then,the elephant herding algorithm is used in sensor node localization.These two algorithms are combined to produce the best standard result in localizing the sensor nodes.To check the proposed performance,experiments are conducted with data from the KDD Cup 2018,which contain the name of 35 stations with concentrations of air pollutants such as PM,SO_(2),CO,NO_(2),and O_(3).These data are normalized and tested with algorithms.The results are comparatively analyzed with other swarm intelligence algorithms such as the elephant herding algorithm,particle swarm optimization,and machine learning algorithms such as decision tree regression and multi-layer perceptron.Results can indicate our proposed algorithm can suggest more meaningful locations for localizing the sensors in the topology.Our proposed method achieves a lower root mean square value with 0.06 to 0.08 for localizing with Stations 1 to 5.展开更多
文摘As one of the most important uses of the Internet of things (IOT), the intelligent household is becoming more and more popular. There are many fragile nodes in the intelligent household and they are bound to encounter some potential risks of hostile attacks, such as eavesdropping, denial of service, error instructs, non-authorized access or fabrication and others. This paper presents a method of design and implement of secure nodes for the intelligent household based on the IOT technology, besides giving the hardware model of nodes, the management of key, the access authentication of network, the transmission of encrypted data, and the alarm based on intrusion detection and other security mechanisms. That is, to improve the security of the based-IOT intelligent household from the viewpoint of nodes security. A test platform is built and the results of simulation prove that the proposed method can effectively improve the security of the intelligent household from access safety and transmission security.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work underGrant Number(RGP 1/322/42)PrincessNourah bint Abdulrahman UniversityResearchers Supporting Project number(PNURSP2022R303)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In recent times,wireless sensor network(WSN)finds their suitability in several application areas,ranging from military to commercial ones.Since nodes in WSN are placed arbitrarily in the target field,node localization(NL)becomes essential where the positioning of the nodes can be determined by the aid of anchor nodes.The goal of any NL scheme is to improve the localization accuracy and reduce the localization error rate.With this motivation,this study focuses on the design of Intelligent Aquila Optimization Algorithm Based Node Localization Scheme(IAOAB-NLS)for WSN.The presented IAOAB-NLS model makes use of anchor nodes to determine proper positioning of the nodes.In addition,the IAOAB-NLS model is stimulated by the behaviour of Aquila.The IAOAB-NLS model has the ability to accomplish proper coordinate points of the nodes in the network.For guaranteeing the proficient NL process of the IAOAB-NLS model,widespread experimentation takes place to assure the betterment of the IAOAB-NLS model.The resultant values reported the effectual outcome of the IAOAB-NLS model irrespective of changing parameters in the network.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 1/279/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R114)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Artificial intelligence(AI)techniques have received significant attention among research communities in the field of networking,image processing,natural language processing,robotics,etc.At the same time,a major problem in wireless sensor networks(WSN)is node localization,which aims to identify the exact position of the sensor nodes(SN)using the known position of several anchor nodes.WSN comprises a massive number of SNs and records the position of the nodes,which becomes a tedious process.Besides,the SNs might be subjected to node mobility and the position alters with time.So,a precise node localization(NL)manner is required for determining the location of the SNs.In this view,this paper presents a new quantum bird migration optimizer-based NL(QBMA-NL)technique for WSN.The goal of the QBMA-NL approach is for determining the position of unknown nodes in the network by the use of anchor nodes.The QBMA-NL technique is mainly based on the mating behavior of bird species at the time of mating season.In addition,an objective function is derived based on the received signal strength indicator(RSSI)and Euclidean distance from the known to unknown SNs.For demonstrating the improved performance of the QBMA-NL technique,a wide range of simulations take place and the results reported the supreme performance over the recent NL techniques.
文摘A wireless sensor network(WSN)consists of several tiny sensor nodes to monitor,collect,and transmit the physical information from an environment through the wireless channel.The node failure is considered as one of the main issues in the WSN which creates higher packet drop,delay,and energy consumption during the communication.Although the node failure occurred mostly due to persistent energy exhaustion during transmission of data packets.In this paper,Artificial Neural Network(ANN)based Node Failure Detection(NFD)is developed with cognitive radio for detecting the location of the node failure.The ad hoc on-demand distance vector(AODV)routing protocol is used for transmitting the data from the source node to the base station.Moreover,the Mahalanobis distance is used for detecting an adjacent node to the node failure which is used to create the routing path without any node failure.The performance of the proposed ANN-NFD method is analysed in terms of throughput,delivery rate,number of nodes alive,drop rate,end to end delay,energy consumption,and overhead ratio.Furthermore,the performance of the ANN-NFD method is evaluated with the header to base station and base station to header(H2B2H)protocol.The packet delivery rate of the ANN-NFD method is 0.92 for 150 nodes that are high when compared to the H2B2H protocol.Hence,the ANN-NFD method provides data consistency during data transmission under node and battery failure.
文摘The pursuit of health has always been the driving force for the advancement of human society,and social development will be profoundly affected by every breakthrough in the medical industry.With the arrival of the information technology revolution era,artificial intelligence(AI)technology has been rapidly developed.AI has been combined with medicine but it has been less studied with gastric cancer(GC).AI is a new budding star in GC,and its contribution to GC is mainly focused on diagnosis and treatment.For early GC,AI’s impact is not only reflected in its high accuracy but also its ability to quickly train primary doctors,improve the diagnosis rate of early GC,and reduce missed cases.At the same time,it will also reduce the possibility of missed diagnosis of advanced GC in cardia.Furthermore,it is used to assist imaging doctors to determine the location of lymph nodes and,more importantly,it can more effectively judge the lymph node metastasis of GC,which is conducive to the prognosis of patients.In surgical treatment of GC,it also has great potential.Robotic surgery is the latest technology in GC surgery.It is a bright star for minimally invasive treatment of GC,and together with laparoscopic surgery,it has become a common treatment for GC.Through machine learning,robotic systems can reduce operator errors and trauma of patients,and can predict the prognosis of GC patients.Throughout the centuries of development of surgery,the history gradually changes from traumatic to minimally invasive.In the future,AI will help GC patients reduce surgical trauma and further improve the efficiency of minimally invasive treatment of GC.
文摘Major fields such as military applications,medical fields,weather forecasting,and environmental applications use wireless sensor networks for major computing processes.Sensors play a vital role in emerging technologies of the 20th century.Localization of sensors in needed locations is a very serious problem.The environment is home to every living being in the world.The growth of industries after the industrial revolution increased pollution across the environment.Owing to recent uncontrolled growth and development,sensors to measure pollution levels across industries and surroundings are needed.An interesting and challenging task is choosing the place to fit the sensors.Many meta-heuristic techniques have been introduced in node localization.Swarm intelligent algorithms have proven their efficiency in many studies on localization problems.In this article,we introduce an industrial-centric approach to solve the problem of node localization in the sensor network.First,our work aims at selecting industrial areas in the sensed location.We use random forest regression methodology to select the polluted area.Then,the elephant herding algorithm is used in sensor node localization.These two algorithms are combined to produce the best standard result in localizing the sensor nodes.To check the proposed performance,experiments are conducted with data from the KDD Cup 2018,which contain the name of 35 stations with concentrations of air pollutants such as PM,SO_(2),CO,NO_(2),and O_(3).These data are normalized and tested with algorithms.The results are comparatively analyzed with other swarm intelligence algorithms such as the elephant herding algorithm,particle swarm optimization,and machine learning algorithms such as decision tree regression and multi-layer perceptron.Results can indicate our proposed algorithm can suggest more meaningful locations for localizing the sensors in the topology.Our proposed method achieves a lower root mean square value with 0.06 to 0.08 for localizing with Stations 1 to 5.