期刊文献+
共找到1,078篇文章
< 1 2 54 >
每页显示 20 50 100
Microstructure,mechanical properties,and wear resistance of VCp-reinforced Fe-matrix composites treated by Q&P process 被引量:2
1
作者 Ping-hu Chen Yi-bo Li +3 位作者 Rui-qing Li Ri-peng Jiang Song-sheng Zeng Xiao-qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第9期1060-1069,共10页
A quenching and partitioning(Q&P) process was applied to vanadium carbide particle(VCp)-reinforced Fe-matrix composites(VC-Fe-MCs) to obtain a multiphase microstructure comprising VC, V8 C7, M3 C, α-Fe, and γ-Fe... A quenching and partitioning(Q&P) process was applied to vanadium carbide particle(VCp)-reinforced Fe-matrix composites(VC-Fe-MCs) to obtain a multiphase microstructure comprising VC, V8 C7, M3 C, α-Fe, and γ-Fe. The effects of the austenitizing temperature and the quenching temperature on the microstructure, mechanical properties, and wear resistance of the VC-Fe-MCs were studied. The results show that the size of the carbide became coarse and that the shape of some particles began to transform from diffused graininess into a chrysanthemum-shaped structure with increasing austenitizing temperature. The microhardness decreased with increasing austenitizing temperature but substantially increased after wear testing compared with the microhardness before wear testing; the microhardness values improved by 20.0% ± 2.5%. Retained austenite enhanced the impact toughness and promoted the transformation-induced plasticity(TRIP) effect to improve wear resistance under certain load conditions. 展开更多
关键词 vanadium CARBIDE fe-matrix composites QUENCHING and partitioning PROCESS transformation-induced plasticity effect MICROHARDNESS impact toughness wear resistance
下载PDF
Heterogeneous catalytic activation of peroxymonosulfate for efficient degradation of organic pollutants by magnetic Cu^0/Fe_3O_4 submicron composites 被引量:10
2
作者 聂刚 黄佳 +3 位作者 胡冶州 丁耀彬 韩小彦 唐和清 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期227-239,共13页
Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-pr... Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants. 展开更多
关键词 Heterogeneous catalysis Magnetic Cu^0/fe3O4 composite PEROXYMONOSULFATE Singlet oxygen Oxidative degradation
下载PDF
Erosive Wear and Wear Mechanism of in situ TiC_P/Fe Composites 被引量:3
3
作者 Zhaojing LIU, Zhiliang NING , Fengzhen LI, Xiurong YAO and Shanzhi RENSchool of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150080, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期719-723,共5页
The base structure of in situ TiCp/Fe composites fabricated under industrial condition was changed by different heat treatments. Erosive wear tests were carried out and the results were compared with that of wear-resi... The base structure of in situ TiCp/Fe composites fabricated under industrial condition was changed by different heat treatments. Erosive wear tests were carried out and the results were compared with that of wear-resistant white cast iron. The results suggest that the wear resistance of the in situ TiCp/Fe composite is higher than that of wear-resistant white cast iron under the sand erosive wear condition. The wear mechanism of the wear-resistant white cast iron was a cycle process that base surface was worn and carbides were exposed, then carbides was broken and wear pits appeared. While the wear mechanism of in situ TiCp/Fe composite was a cycle process that base surface was worn and TiC grains were exposed and dropped. The wear resistance of in situ TiCp/Fe composite was lower than that of wear-resistant white cast iron under the slurry erosive wear condition. Under such circumstance, the material was not only undergone erosive wear but also electrochemistry erosion due to the contact with water in the medium. The wear behaviours can be a combination of two kinds of wear and the sand erosive wear is worse than slurry erosive wear. 展开更多
关键词 In situ TiCp/fe composite Erosive wear Wear mechanism
下载PDF
Effects of technological parameters on microstructures and properties of in situ TiC_p/Fe composites 被引量:2
4
作者 严有为 魏伯康 +1 位作者 傅正义 袁润章 《中国有色金属学会会刊:英文版》 CSCD 2000年第2期187-191,共5页
The effects of the reactive temperature, time and the cooling rate of an Fe Ti C alloy melt on the microstructures and mechanical properties of in situ TiC p/Fe composites were investigated. The results show that the ... The effects of the reactive temperature, time and the cooling rate of an Fe Ti C alloy melt on the microstructures and mechanical properties of in situ TiC p/Fe composites were investigated. The results show that the hardness and impact toughness of the prepared composites increase with increasing the reactive temperature, because more and finer TiC particles are formed in the higher temperature melt. However, after the TiC synthesis reaction in the melt completed, the impact toughness of the composites will decrease if the melt reactive time is further prolonged, owing to the coarsening of the formed TiC particles. Under the present experimental condition, the cooling rate of the melt containing dispersions has little influence on the number, size and distribution of the particles in the composites. 展开更多
关键词 in SITU reaction microstructure property TiC_p/fe compositeS
下载PDF
Progressive Failure Evaluation of Composite Skin-Stiffener Joints Using Node to Surface Interactions and CZM 被引量:5
5
作者 A.Sane P.M.Padole R.V.Uddanwadiker 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第5期281-294,共14页
T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions ... T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however,in specific applications these joints undergo pull loading.De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure.Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied.In this study,Finite Element Analysis has been performed using cohesive contact interactions on a composite T-joint to simulate the pull out test conditions.A simplified shell based model coupled with CZM is proposed,which can evaluate the failure initiation and progression accurately with lesser computational efforts.The final failure occurred at a displacement of 4.71 mm at the computed failure load of 472.57 kgf for basic configuration.Computed Failure load for the padded configuration is 672.8 kgf and corresponding displacement is 4.6 mm.The results obtained by the proposed numerical model are validated by experimental results and it is observed that predicted failure displacements and failure load calculated were correlating reasonably well with the experiment. 展开更多
关键词 Carbon fiber composite fe analysis T-JOINT COHESIVE zone modeling NODE to surface interactions
下载PDF
Stabilization of ferric arsenate sludge with mechanochemically prepared FeS2/Fe composites 被引量:3
6
作者 Xiao-bo MIN Tian-yu PENG +3 位作者 Yang-wen-jun LI Yong KE Yan-jie LIANG Xing-yu HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1983-1992,共10页
FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated... FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated.The results show that the optimum conditions are FeS2/Fe molar ratio of 5:5,milling time of 2 h,ball-to-material mass ratio of 15:1 and milling with stainless steel ball.Then,the composites were characterized by XRD,SEM,FTIR,etc.The physicochemical properties of FeS2/Fe mixture change dramatically,which is responsible for its excellent performance.Finally,the stabilization process of FAS was optimized.When the FAS is mixed with composites at mass ratio of 4:1 and milled for 30 min,the As leaching concentration of FAS can be reduced from 639.15 to 4.74 mg/L with the stabilization ratio of 99.2%. 展开更多
关键词 ARSENIC ferric arsenate sludge STABILIZATION mechanical milling feS2/fe composites
下载PDF
IN SITU GRADIENT DOUBLE-LAYER COMPOSITES OF Al-Fe ALLOY BY CENTRIFUGAL CASTING 被引量:1
7
作者 Wang, Qudong 《中国有色金属学会会刊:英文版》 EI CSCD 1997年第1期126-131,共6页
INSITUGRADIENTDOUBLELAYERCOMPOSITESOFAlFeALLOYBYCENTRIFUGALCASTING①WangQudong,JinJunzeResearchCenterofFoun... INSITUGRADIENTDOUBLELAYERCOMPOSITESOFAlFeALLOYBYCENTRIFUGALCASTING①WangQudong,JinJunzeResearchCenterofFoundryEnginering,Dal... 展开更多
关键词 in SITU compositeS GRADIENT compositeS double layer compositeS Al fe ALLOY CENTRIFUGAL CASTING
下载PDF
Electromagnetic and microwave absorbing properties of FeCoB powder composites 被引量:7
8
作者 Shen-Gen Zhang Hang-Xin Zhu +3 位作者 Jian-Jun Tian De-An Pan Bo Liu Yan-Tao Kang 《Rare Metals》 SCIE EI CAS CSCD 2013年第4期402-407,共6页
The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that t... The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that the flake-like powders are obtained. As milling time increases, the flake-like powder particles tend to agglomerate, causing the flake-like powders decrease gradually. The milling time plays an important role in the electromagnetic parameters which relates to the shape and size of the powder particles. The calculation shows that the sample milled for 6 h could achieve an optimal reflection loss of -11.5 dB at 5.8 GHz, with mass fraction of 83 % and a matching thickness of 1.8 mm. The result also indicates that the microwave absorbing properties of the FeCoB powder composites are adjustable by changing their thickness, and can be applied as a thinner microwave absorbing material in the range of 2-8 GHz. 展开更多
关键词 fe48Co48B4 powder composites Mechanical milling Electromagnetic parameters Microwave absorbing properties
下载PDF
Mechanical properties and wear resistance of medium entropy Fe40Mn40Cr10Co10/TiC composites 被引量:8
9
作者 Jian-ying WANG Jing-hua FANG +5 位作者 Hai-lin YANG Zhi-lin LIU Rui-di LI Shou-xun JI Yun WANG Jian-ming RUAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1484-1494,共11页
The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the ... The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the Fe40Mn40Cr10Co10/TiC composites were individually investigated. It was found that TiC particles homogenously distributed in the Fe40Mn40Cr10Co10/TiC composite after being sintered at 1373 K for 15 min. Meanwhile, grain refinement was observed in the as-sintered composite. Compared with the pure Fe40Mn40Cr10Co10 medium entropy alloy (MEA) matrix grain, addition of 10% TiC particles resulted in an increase in the compressive strength from 1.571 to 2.174 GPa, and the hardness from HV 320 to HV 872. Wear resistance results demonstrated that the friction coefficient, wear depth and width of the composite decreased in comparison with the Fe40Mn40Cr10Co10 MEA matrix. Excellent mechanical properties and wear resistance could offer the Fe40Mn40Cr10Co10/TiC composite a very promising candidate for engineering applications. 展开更多
关键词 TIC fe40Mn40Cr10Co10/TiC composites mechanical properties wear resistance spark plasma sintering
下载PDF
Effect of Fe_2P in LiFePO_4/Fe_2P composite on electrochemical properties synthesized by MA and control of heat condition 被引量:4
10
作者 PARK Jong Suk LEE Kyung Tae LEE Kyung Sub 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期179-183,共5页
In order to control the size and distribution of the high conductive Fe2P in LiFePO4/Fe2P composite, two different cooling rates (Fast: 15 ℃·min-1, Slow: 2 ℃·min-1) were employed after mechanical alloying.... In order to control the size and distribution of the high conductive Fe2P in LiFePO4/Fe2P composite, two different cooling rates (Fast: 15 ℃·min-1, Slow: 2 ℃·min-1) were employed after mechanical alloying. The discharge capacity of the fast cooled was 83 mAh·g-1 and the slow cooled 121 mAh·g-1. The particle size of the synthesized powder was examined by transmission electron microscopy and distribution of Fe2P was characterized using scanning electron microscopy (SEM). In addition, two-step heat treatment was carried out for better distribution of Fe2P. X-ray diffraction (XRD) and Rietveld refinement reveal that LiFePO4/Fe2P composite consists of 95.77% LiFePO4 and 4.33% of Fe2P. 展开更多
关键词 LifePO4/fe2P composite mechanical alloying heat treatment discharge capacity
下载PDF
Properties of Hot-Pressed Al_2O_3-Fe Composites 被引量:4
11
作者 M.M.El-Sayed Seleman, Xudong SUN and Liang ZUO Department of Materials Science and Engineering, Northeastern University, Shenyang 110006, China K.A.Khalil Powder Metallurgy Institute, Central South University, Changsha 410083, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第5期538-542,共5页
Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were... Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were obtained for addition up to 10 vol. pct Fe, but relative density decreased gradually with further increase in Fe addition. The materials exhibit a homogeneous dispersion of Fe. Fracture strength of the composites exhibits a maximum value of 604 MPa at 15 vol. pct Fe, which is 1.5 times that of alumina alone. Fracture toughness increases with the increase in Fe content, reaching 7.5 MPa.m(1/2) at 20 vol. pct Fe. The theoretical values of fracture toughness was calculated and compared with the experimental one. Toughening mechanisms of the composites are also discussed. 展开更多
关键词 fe Properties of Hot-Pressed Al2O3-fe composites AL
下载PDF
Melt Infiltration Ability and Microstructural Evolution of Fe40Al/ TiC Composites System 被引量:2
12
作者 F J Oliveira J L Baptista J M Vieira 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期93-,共1页
Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and cor... Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and corrosion resistance, was used as binder for fabricating Fe40Al/TiC composites b y pressureless melt infiltration. The wetting ability of liquid Fe40Al in porous TiC pre-form was studied by in-situ monitoring the melting and infiltration p rocess. The infiltration ability was investigated by observing the distance of l iquid Fe40Al intrusion in porous TiC pre-forms at different infiltration temper atures and times by using optical microscope. Porous TiC per-forms with density of 60%~88%TD (theoretical density), prepared under pre-defined sintering temp e rature cycles, were used for fabricating Fe40Al/TiC composites in the range of 1 2%~40% metal content by volume. Almost full dense Fe40Al/TiC composites were su c cessfully fabricated by this technique. Liquid Fe40Al exhibited excellent infilt ration ability, the distance of complete intrusion of liquid Fe40Al in the TiC s intered pre-form with density of 88%TD was over 7 mm after 5 min at the inf iltration temperature of 1 450 ℃. Microstructural observation by SEM and TEM also showed that liquid Fe40Al filled the very narrow gaps among TiC particles, the interfaces of TiC particles and F e40Al plastic ligaments being metallurgical bonded. TEM revealed that high densi ty of dislocations formed in Fe40Al ligaments during solidification, which favor the mechanical properties. Ti decomposed from TiC particles and dissolved into Fe40Al during infiltration. According to the compositional analysis of TEM-EDS, the concentration of Ti in Fe40Al ranges at 1at%~4at% depending on composite f a bricating conditions and the distance from the measuring point to the closest Ti C particles. XRD analysis indicated that the composites were composed of two pha ses, the original TiC and Fe 0.4Al 0.6 intermetallic. No new phase formed during infiltration, but the lattice parameter of Fe 0.4Al 0.6 was expended due to the Ti in the solid solution. 展开更多
关键词 TiC composites System Melt Infiltration Ability and Microstructural Evolution of fe40Al fe
下载PDF
Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO_2 composite electrodeposition 被引量:10
13
作者 王云燕 彭文杰 +1 位作者 柴立元 舒余德 《Journal of Central South University of Technology》 EI 2003年第3期183-189,共7页
Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition in alkaline zincatesolutions were studied respectively by the methods of linear potential sweep and cyclic voltammetry. From the re-s... Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition in alkaline zincatesolutions were studied respectively by the methods of linear potential sweep and cyclic voltammetry. From the re-sults it can be concluded that Zn shows under potential deposition, Zn-Fe alloy codeposition is anomalous codeposi-tion and Zn-Fe alloy cathode polarization is increased with the introduction of additive. From the view point of elec-trochemistry, the reasons that the content of Fe in the Zn-Fe coating changes with the composition of the electrolyteand the process conditions altering and the relationship between the content of Fe and the appearance of the coatingare interpreted. The cathode polarization of Zn-Fe alloy codeposition is enhanced obviously with addition of additive.In the course of composite electrodeposition, TiO2 has less promotion to electrodeposition of zinc ions than to iron i-ons, while the electrodeposition of iron ions improves the content of TiO2 in composite coating, which is inagreement with the results of process experiments. 展开更多
关键词 Zn-fe alloy ELECTRODEPOSITION Zn-fe-TiO2 composite electrochemical behavior TQ153
下载PDF
Electrochemical performance of LiFePO_4/(C+Fe_2P) composite cathode material synthesized by sol-gel method 被引量:2
14
作者 陈权启 李小栓 王建明 《Journal of Central South University》 SCIE EI CAS 2011年第4期978-984,共7页
A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical perf... A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical tests. The Fe2P content, morphology and electrochemical performance of LiFePOa/(C+Fe2P) composite depend on the calcination temperature. The optimized LiFePO4/(C+FeeP) composite is prepared at 650 ~C and the optimized composite exhibits sphere-like morphology with porous structure and Fe2P content of about 3.2% (mass fraction). The discharge capacity of the optimized LiFePO4/(C+FeRP) at 0.1C is 156 and 161 mA.h/g at 25 and 55 ℃, respectively, and the corresponding capacity retentions are 96% after 30 cycles; while the capacity at 1C is 142 and 149 mA.h/g at 25 and 55 ℃, respectively, and the capacity still remains 135 and 142 mA-h/g after 30 cycles at 25 and 55℃, respectively. 展开更多
关键词 LifePO4/(C+fe2P) composite sol-gel sphere-like morphology electrochemical performance
下载PDF
Higher alcohol synthesis over Cu-Fe composite oxides with high selectivity to C_(2+)OH 被引量:12
15
作者 Zhenghong Bao Kang Xiao +5 位作者 Xingzhen Qi Xinxing Wang Liangshu Zhong Kegong Fang Minggui Lin Yuhan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期107-113,共7页
Cu-Fe composite oxides were prepared by co-precipitation method and tested for higher alcohol synthesis from syngas. The selectivity to C2+OH and C6+OH in alcohol distribution was very high while the methane product... Cu-Fe composite oxides were prepared by co-precipitation method and tested for higher alcohol synthesis from syngas. The selectivity to C2+OH and C6+OH in alcohol distribution was very high while the methane product fraction in hydrocarbon distribution was rather low, demonstrating a promising potential in higher alcohols synthesis from syngas. The distribution of alcohols and hydrocarbons approximately obeyed Anderson-Schulz-Flory distribution with similar chain growth probability, indicating alcohols and hydrocarbons derived from the same intermediates. The effects of Cu/Fe molar ratio, reaction temperature and gas hourly space velocity (GHSV) on catalytic performance were studied in detail. The sample with a Cu/Fe molar ratio of 10/1 exhibited the best catalytic performance. Higher reaction temperature accelerated water-gas-shift reaction and led to lower total alcohols selectivity. GHSV showed great effect on catalytic performance and higher GHSV increased the total alcohol selectivity, indicating there existed visible dehydration reaction of alcohol into hydrocarbon. 展开更多
关键词 higher alcohol synthesis SYNGAS Cu-fe composite oxides molar ratio GHSV
下载PDF
One developed finite element model used in nano-layered flaky Ti_(2)AlC MAX ceramic particles reinforced magnesium composite
16
作者 Wantong Chen Jingyu Yang +4 位作者 Wenbo Yu Yishi Su Ang Zhang Chaosheng Ma Yihu Ma 《Journal of Magnesium and Alloys》 CSCD 2024年第10期4219-4228,共10页
As one novel reinforcement used in magnesium composite,nano-layered flaky ternary MAX particle exhibits interesting anisotropic ceramic and metal properties.In order to accurately simulate the mechanical properties an... As one novel reinforcement used in magnesium composite,nano-layered flaky ternary MAX particle exhibits interesting anisotropic ceramic and metal properties.In order to accurately simulate the mechanical properties and damage behavior of MAX particle reinforced magnesium composite,we developed one finite element(FE)model based on 2D and 3D microstructural observations of 10 vol.%Ti2AlC-AZ91D composite.To improve the accuracy,matrix ductile damage,particle internal delamination deformation behaviors,and particle-matrix interfacial behaviors were respectively introduced into this model.The visual deformation processes of crack generation and propagation were carefully presented and discussed.The effects of interfacial strength and particle orientation on material properties were systematically investigated. 展开更多
关键词 MAX phases Mg composites Mechanical properties Damage behavior fe method
下载PDF
Comparison of wear behavior of ABS and Nylon6-Fe powder composite parts prepared with fused deposition modelling 被引量:2
17
作者 Harish Kumar Garg Rupinder Singh 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3705-3711,共7页
Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study ... Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study the friction and wear behavior of parts made of newly developed Nylon6-Fe composite material by FDM. This work also involves the comparison of the friction and wear characteristics of the Nylon6-Fe composite with the existing acrylonitrile butadiene styrene(ABS) filament of the FDM machine. This Is carried out on the pin on disk setup by varying the load(5, 10, 15 and 20 N) and speed(200 and 300 r/min). It is concluded that the newly developed composite is highly wear resistant and can be used in industrial applications where wear resistance is of paramount importance. Morphology of the surface in contact with the Nylon6-Fe composite and ABS is also carried out. 展开更多
关键词 composite material fused deposition modeling(FDM) parts TRIBOLOGY pin on disc iron(fe Nylon 6 acrylonitrile butadiene styrene(ABS)
下载PDF
Effect of Fe content on microstructure and mechanical properties of Cu-Fe-based composite coatings by laser induction hybrid rapid cladding 被引量:1
18
作者 Sheng-feng ZHOU Jian-bo LEI +3 位作者 Zheng XIONG Jin-bo GUO Zhen-jie GU Hong-bo PAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3196-3204,共9页
To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser... To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate. 展开更多
关键词 composite coating laser induction hybrid rapid cladding Cu.fe alloy liquid phase separation microstructure mechanical properties
下载PDF
A simple method for purification of genomic DNA from whole blood using Fe_3O_4/Au composite particles as a carrier 被引量:1
19
作者 Zhao Ming Zhang Xianqing +2 位作者 Wang Sen Chen Chao Cui Yali 《Journal of Medical Colleges of PLA(China)》 CAS 2009年第4期239-243,共5页
Objective: To establish a method of genomic DNA extraction from whole blood using Fe3O4/Au composite particles as a carrier. Methods: Two crucial conditions (sodium chloride concentration and amount of the magnetic... Objective: To establish a method of genomic DNA extraction from whole blood using Fe3O4/Au composite particles as a carrier. Methods: Two crucial conditions (sodium chloride concentration and amount of the magnetic particles) were optimized and 8 different human whole blood samples were used to purify genomic DNA under the optimal condition. Then agarose gel electrophoresis and polymerase cbain reaction (PCR) were performed. Results: The optimal binding condition was 1.5 mol/L NaC1/10% PEG, and the optimal amount of Fe3O4/Au composite particles was 600μg. The yields of the genomic DNA from 100μl of different whole blood samples were 2-5 μg, and the ratio of A260/A280 was in the range of 1.70-1.90. The size of genomic DNA was about 23 kb and the PCR was valid. Conclusion: The purification system using Fe3O4/Au composite microparticles has advantages in high yield, high purity, ease of operating, time saving and avoiding centrifugation. The purified sample was found to function satisfactorily in PCR amplification. 展开更多
关键词 fe3O4/Au composite particles Genomic DNA PURIFICATION Whole blood
下载PDF
Synthesis and Characterization of Superparamagnetic Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>Core-Shell Composite Nanoparticles 被引量:3
20
作者 Meizhen Gao Wen Li +2 位作者 Jingwei Dong Zhirong Zhang Bingjun Yang 《World Journal of Condensed Matter Physics》 2011年第2期49-54,共6页
The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were ch... The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid. 展开更多
关键词 MAGNETITE NANOPARTICLES fe3O4@SiO2 composite NANOPARTICLES Dispersion Thermal Stability Particle Size Magnetic Property
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部