Hepatocellular carcinoma(HCC)is one of most common and deadliest malignancies.Celastrol(Cel),a natural product derived from the Tripterygium wilfordii plant,has been extensively researched for its potential effectiven...Hepatocellular carcinoma(HCC)is one of most common and deadliest malignancies.Celastrol(Cel),a natural product derived from the Tripterygium wilfordii plant,has been extensively researched for its potential effectiveness in fighting cancer.However,its clinical application has been hindered by the unclear mechanism of action.Here,we used chemical proteomics to identify the direct targets of Cel and enhanced its targetability and antitumor capacity by developing a Cel-based liposomes in HCC.We demonstrated that Cel selectively targets the voltage-dependent anion channel 2(VDAC2).Cel directly binds to the cysteine residues of VDAC2,and induces cytochrome C release via dysregulating VDAC2-mediated mitochondrial permeability transition pore(mPTP)function.We further found that Cel induces ROS-mediated ferroptosis and apoptosis in HCC cells.Moreover,coencapsulation of Cel into alkyl glucoside-modified liposomes(AGCL)improved its antitumor efficacy and minimized its side effects.AGCL has been shown to effectively suppress the proliferation of tumor cells.In a xenograft nude mice experiment,AGCL significantly inhibited tumor growth and promoted apoptosis.Our findings reveal that Cel directly targets VDAC2 to induce mitochondria-dependent cell death,while the Cel liposomes enhance its targetability and reduces side effects.Overall,Cel shows promise as a therapeutic agent for HCC.展开更多
Objective:To investigate the regulatory effect of Qiliqiangxin Capsule on mitochondrial Ca^(2+)related genes in rats with myocardial infarction(MI).Methods:The rat model of MI was established by ligation of the left a...Objective:To investigate the regulatory effect of Qiliqiangxin Capsule on mitochondrial Ca^(2+)related genes in rats with myocardial infarction(MI).Methods:The rat model of MI was established by ligation of the left anterior descending coronary artery.After operation,the rats were randomly assigned to the model group,the Qiliqiangxin group and the captopril group;a sham-operated group was also available as a control.After four weeks of treatment,the extent of infarction in rats was observed by gross cardiac structure and the morphological changes of myocardial histopathology were observed by HE staining.Detection of mitochondrial Ca^(2+)transport-related genes such as inositol-1,4,5-trisphosphate receptor 2(IP3R2),glucose regulated protein 75(GRP75),voltage-dependent anion channel 1(VDAC1),and mitofusion 2(Mfn2)and mitochondrial apoptosis-related genes such as B-cell lymphoma-2(Bcl-2)and Bcl-2 related X protein(Bax)mRNA expression changes was measured by RT-PCR in the infarct margins of the heart;Western blot was used to detect changes in Bcl-2,Bax protein expression in myocardial tissue.The rate of apoptosis in cardiac myocardial tissue was detected by TUNEL staining.Results:Compared with the sham group,the anterior left ventricular wall of the model group showed a large area of infarction,and the structure of myocardial tissue was disordered.The mRNA expression level of mitochondrial Ca^(2+)transport-related genes such as IP3R2,GRP75,VDAC1,and Mfn2 were significantly increased(P<0.05,P<0.01);The mRNA and protein expression of Bcl-2,a molecule related to mitochondrial apoptosis,were significantly decreased(P<0.01),while the mRNA and protein expression of Bax were significantly increased(P<0.01);and apoptosis rate was significantly increased(P<0.01).Compared with the model group,the infarct size of cardiac gross specimens in the Qiliqiangxin group and the captopril group was reduced and myocardial fibers were relatively well ordered;The mRNA expression of mitochondrial Ca^(2+)transport-related genes such as IP3R2,GRP75,VDAC1,and Mfn2 were significantly reduced(P<0.01);the mRNA and protein expression of Bcl-2,a molecule related to mitochondrial apoptosis,were increased(P<0.05,P<0.01),and the mRNA and protein expression of Bax were significantly decreased(P<0.05,P<0.01).and apoptosis rate was significantly decreased(P<0.01).Conclusion:Qiliqiangxin Capsule can improve the morphological structure of the heart of rats with MI,and its mechanism is related to regulation of the gene expression of mitochondrial Ca^(2+)transport complex IP3R2/GRP75/VDAC1,thereby inhibiting apoptosis.展开更多
Background: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with aberrant T-cell developmental arrest. Individuals with relapsed T-ALL have limited therapeutic alternatives and po...Background: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with aberrant T-cell developmental arrest. Individuals with relapsed T-ALL have limited therapeutic alternatives and poor prognosis. The mitochondrial function is critical for the T-cell viability. The voltage-dependent anion channel 2 (VDAC2) in the mitochondrial outer membrane, interacts with pro-apoptotic BCL-2 proteins and mediates the apoptosis of several cancer cell lines. Objective: The aim of the current study is to explore the role of VDAC2 in T-ALL cell survival and proliferation. Methods: Publicly available datasets of RNA-seq results were analyzed for expression of VDAC isoforms and T-ALL cell lines were treated with a VDAC2 small molecular inhibitor erastin. A VDAC2 RNA interference (siRNA) was delivered to T-ALL cell lines using a retroviral vector. Functional assays were performed to investigate the VDAC2 siRNA impacts on cell proliferation, apoptosis and survival of T-ALL cells. Results: Our analysis found a high expression of VDAC2 mRNA in various T-ALL cell lines. Public datasets of T-ALL RNA-seq also showed that VDAC2 is highly expressed in T-ALL (116.2 ± 36.7), compared to control groups. Only two T-ALL cell lines showed sensitivity to erastin (20 μM) after 48 hours of incubation, including Jurkat (IC<sub>50</sub> = 3.943 μM) and Molt4 (IC<sub>50</sub> = 3.286 μM), while another two T-ALL cells (CUTLL1 and RPMI 8402) had unstable IC<sub>50</sub>. However, five T-ALL cell lines (LOUCY, CCRF-CEM, P12-ICHI, HPB-ALL, and PEER cells) showed resistance to erastin. On the contrary, all T-ALL cell lines genetically inhibited with VDAC2 siRNA led to more than 80% decrease in VDAC2 mRNA levels, and a Conclusion: VDAC2 is highly expressed in T-ALL cells. The inhibition of VDAC2 significantly decreased cell viability, increased apoptosis, reduced cell proliferation and caused cell cycle sub-G1 arrest of T-ALL cells.展开更多
Voltage-dependent anion channel (VDAC)I is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein comple...Voltage-dependent anion channel (VDAC)I is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein complex candidate agent of the mitochondrial permeability transition (MPT). Working at the single live cell level, we found that overexpression of VDAC1 triggers MPT at the mitochondrial inner membrane (MIM). Conversely, silencing VDAC1 ex- pression results in the inhibition of MPT caused by selenite-induced oxidative stress. This MOM-MIM crosstalk was modulated by Cyclosporin A and mitochondrial Cyclophilin D, but not by Bcl-2 and BcI-XL, indicative of PTP operation. VDAC1-dependent MPT engages a positive feedback loop involving reactive oxygen species and p38-MAPK, and secondarily triggers a canonical apoptotic response including Bax activation, cytochrome e release and caspase 3 activation. Our data thus support a model of the PTP complex involving VDAC1 at the MOM, and indicate that VDACl-dependent MPT is an upstream mechanism playing a causal role in oxidative stress-induced apoptosis.展开更多
基金support from the National Natural Science Foundation of China(Grants No.82304827,82074098,81841001)the Fundamental Research Funds for the Central public welfare research institutes(ZZ13-ZD-07),the National Key Research and Development Programof China(2020YFA0908000,2022YFC2303600)+7 种基金the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(No:ZYYCXTD-C-202002)The Shenzhen Medical Research Fund of Shenzhen Medical Academy of Research and Translation(B2302051)the Fundamental Research Funds for the Central Public Welfare Research Institutes(Grants No.ZZ13-YQ-108)the Shenzhen Science and Technology Innovation Commission(Grants No.JCYJ20210324115800001)the Science and Technology Foundation of Shenzhen(Shenzhen Clinical Medical Research Center for Geriatric Diseases),the Distinguished Expert Project of Sichuan Province Tianfu Scholar(CW202002)Supported by Shenzhen Governmental Sustainable Development Fund(KCXFZ20201221173612034)Supported by Shenzhen key Laboratory of Kidney Diseases(ZDSYS201504301616234)Supported by Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties(NO.SZGSP001).
文摘Hepatocellular carcinoma(HCC)is one of most common and deadliest malignancies.Celastrol(Cel),a natural product derived from the Tripterygium wilfordii plant,has been extensively researched for its potential effectiveness in fighting cancer.However,its clinical application has been hindered by the unclear mechanism of action.Here,we used chemical proteomics to identify the direct targets of Cel and enhanced its targetability and antitumor capacity by developing a Cel-based liposomes in HCC.We demonstrated that Cel selectively targets the voltage-dependent anion channel 2(VDAC2).Cel directly binds to the cysteine residues of VDAC2,and induces cytochrome C release via dysregulating VDAC2-mediated mitochondrial permeability transition pore(mPTP)function.We further found that Cel induces ROS-mediated ferroptosis and apoptosis in HCC cells.Moreover,coencapsulation of Cel into alkyl glucoside-modified liposomes(AGCL)improved its antitumor efficacy and minimized its side effects.AGCL has been shown to effectively suppress the proliferation of tumor cells.In a xenograft nude mice experiment,AGCL significantly inhibited tumor growth and promoted apoptosis.Our findings reveal that Cel directly targets VDAC2 to induce mitochondria-dependent cell death,while the Cel liposomes enhance its targetability and reduces side effects.Overall,Cel shows promise as a therapeutic agent for HCC.
基金This study was supported by Beijing University of Traditional Chinese Medicine Dongzhimen Hospital 2022 Science and Technology Innovation Special Project(DZMKJCX-2022-008)。
文摘Objective:To investigate the regulatory effect of Qiliqiangxin Capsule on mitochondrial Ca^(2+)related genes in rats with myocardial infarction(MI).Methods:The rat model of MI was established by ligation of the left anterior descending coronary artery.After operation,the rats were randomly assigned to the model group,the Qiliqiangxin group and the captopril group;a sham-operated group was also available as a control.After four weeks of treatment,the extent of infarction in rats was observed by gross cardiac structure and the morphological changes of myocardial histopathology were observed by HE staining.Detection of mitochondrial Ca^(2+)transport-related genes such as inositol-1,4,5-trisphosphate receptor 2(IP3R2),glucose regulated protein 75(GRP75),voltage-dependent anion channel 1(VDAC1),and mitofusion 2(Mfn2)and mitochondrial apoptosis-related genes such as B-cell lymphoma-2(Bcl-2)and Bcl-2 related X protein(Bax)mRNA expression changes was measured by RT-PCR in the infarct margins of the heart;Western blot was used to detect changes in Bcl-2,Bax protein expression in myocardial tissue.The rate of apoptosis in cardiac myocardial tissue was detected by TUNEL staining.Results:Compared with the sham group,the anterior left ventricular wall of the model group showed a large area of infarction,and the structure of myocardial tissue was disordered.The mRNA expression level of mitochondrial Ca^(2+)transport-related genes such as IP3R2,GRP75,VDAC1,and Mfn2 were significantly increased(P<0.05,P<0.01);The mRNA and protein expression of Bcl-2,a molecule related to mitochondrial apoptosis,were significantly decreased(P<0.01),while the mRNA and protein expression of Bax were significantly increased(P<0.01);and apoptosis rate was significantly increased(P<0.01).Compared with the model group,the infarct size of cardiac gross specimens in the Qiliqiangxin group and the captopril group was reduced and myocardial fibers were relatively well ordered;The mRNA expression of mitochondrial Ca^(2+)transport-related genes such as IP3R2,GRP75,VDAC1,and Mfn2 were significantly reduced(P<0.01);the mRNA and protein expression of Bcl-2,a molecule related to mitochondrial apoptosis,were increased(P<0.05,P<0.01),and the mRNA and protein expression of Bax were significantly decreased(P<0.05,P<0.01).and apoptosis rate was significantly decreased(P<0.01).Conclusion:Qiliqiangxin Capsule can improve the morphological structure of the heart of rats with MI,and its mechanism is related to regulation of the gene expression of mitochondrial Ca^(2+)transport complex IP3R2/GRP75/VDAC1,thereby inhibiting apoptosis.
文摘Background: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with aberrant T-cell developmental arrest. Individuals with relapsed T-ALL have limited therapeutic alternatives and poor prognosis. The mitochondrial function is critical for the T-cell viability. The voltage-dependent anion channel 2 (VDAC2) in the mitochondrial outer membrane, interacts with pro-apoptotic BCL-2 proteins and mediates the apoptosis of several cancer cell lines. Objective: The aim of the current study is to explore the role of VDAC2 in T-ALL cell survival and proliferation. Methods: Publicly available datasets of RNA-seq results were analyzed for expression of VDAC isoforms and T-ALL cell lines were treated with a VDAC2 small molecular inhibitor erastin. A VDAC2 RNA interference (siRNA) was delivered to T-ALL cell lines using a retroviral vector. Functional assays were performed to investigate the VDAC2 siRNA impacts on cell proliferation, apoptosis and survival of T-ALL cells. Results: Our analysis found a high expression of VDAC2 mRNA in various T-ALL cell lines. Public datasets of T-ALL RNA-seq also showed that VDAC2 is highly expressed in T-ALL (116.2 ± 36.7), compared to control groups. Only two T-ALL cell lines showed sensitivity to erastin (20 μM) after 48 hours of incubation, including Jurkat (IC<sub>50</sub> = 3.943 μM) and Molt4 (IC<sub>50</sub> = 3.286 μM), while another two T-ALL cells (CUTLL1 and RPMI 8402) had unstable IC<sub>50</sub>. However, five T-ALL cell lines (LOUCY, CCRF-CEM, P12-ICHI, HPB-ALL, and PEER cells) showed resistance to erastin. On the contrary, all T-ALL cell lines genetically inhibited with VDAC2 siRNA led to more than 80% decrease in VDAC2 mRNA levels, and a Conclusion: VDAC2 is highly expressed in T-ALL cells. The inhibition of VDAC2 significantly decreased cell viability, increased apoptosis, reduced cell proliferation and caused cell cycle sub-G1 arrest of T-ALL cells.
文摘Voltage-dependent anion channel (VDAC)I is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein complex candidate agent of the mitochondrial permeability transition (MPT). Working at the single live cell level, we found that overexpression of VDAC1 triggers MPT at the mitochondrial inner membrane (MIM). Conversely, silencing VDAC1 ex- pression results in the inhibition of MPT caused by selenite-induced oxidative stress. This MOM-MIM crosstalk was modulated by Cyclosporin A and mitochondrial Cyclophilin D, but not by Bcl-2 and BcI-XL, indicative of PTP operation. VDAC1-dependent MPT engages a positive feedback loop involving reactive oxygen species and p38-MAPK, and secondarily triggers a canonical apoptotic response including Bax activation, cytochrome e release and caspase 3 activation. Our data thus support a model of the PTP complex involving VDAC1 at the MOM, and indicate that VDACl-dependent MPT is an upstream mechanism playing a causal role in oxidative stress-induced apoptosis.