In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels signifi...In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.展开更多
In biology, signal transduction refers to a process by which a cell converts one kind of signal or stimulus into another. It involves ordered sequences of biochemical reactions inside the cell. These cascades of react...In biology, signal transduction refers to a process by which a cell converts one kind of signal or stimulus into another. It involves ordered sequences of biochemical reactions inside the cell. These cascades of reactions are carried out by enzymes and activated by second messengers. Signal transduction pathways are complex in nature. Each pathway is responsible for tuning one or more biological functions in the intracellular environment as well as more than one pathway interact among themselves to carry forward a single biological function. Such kind of behavior of these pathways makes understanding difficult. Hence, for the sake of simplicity, they need to be partitioned into smaller modules and then analyzed. We took VEGF signaling pathway, which is responsible for angiogenesis for this kind of modularized study. Modules were obtained by applying the algorithm of Nayak and De (Nayak and De, 2007) for different complexity values. These sets of modules were compared among themselves to get the best set of modules for an optimal complexity value. The best set of modules compared with four different partitioning algorithms namely, Farhat’s (Farhat, 1998), Greedy (Chartrand and Oellermann, 1993), Kernighan-Lin’s (Kernighan and Lin, 1970) and Newman’s community finding algorithm (Newman, 2006). These comparisons enabled us to decide which of the aforementioned algorithms was the best one to create partitions from human VEGF signaling pathway. The optimal complexity value, on which the best set of modules was obtained, was used to get modules from different species for comparative study. Comparison among these modules would shed light on the trend of development of VEGF signaling pathway over these species.展开更多
There is evidence to suggest that follicle-stimulating hormone (FSH) can facilitate the neovascularization of ovarian cancers by increasing vascular endothelial growth factor (VEGF) expression in cancer cells, alt...There is evidence to suggest that follicle-stimulating hormone (FSH) can facilitate the neovascularization of ovarian cancers by increasing vascular endothelial growth factor (VEGF) expression in cancer cells, although the underlying molecular mechanism of this process is not well known. Therefore, we investigated the effect of FSH on VEGF expression in the ovarian cancer cell lines SKOV-3 and ES-2. Treatment with FSH significantly increased VEGF expression in a dose- and time-dependent manner. In addition, FSH treatment enhanced the expression of survivin and hypoxlainducible factor-1 (HIF-1α). Knockdown of survivin or HIF-1α suppressed VEGF expression, but only knockdown of survivin inhibited FSH-stimulated VEGF expression. Pretreatment with LY294002, a phosphoinositide 3-kinase (PI3K)/AKT inhibitor, neutralized the enhanced expression of survivin induced by FSH, but treatment with U0126, a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, had no such effect. We further showed that ovarian serous cystadenocarcinoma samples had much higher incidence of positive AKT and phosphorylated AKT (pAKT) protein staining than did benign ovarian cystadenoma samples (p 〈 0.01). The 5-year survival rate was only about 15% in patients with ovarian serous cystadenocarcinoma who had AKT and pAKT expression, whereas it was about 80% in those who did not have AKT or pAKT expression. Taken together, these results indicate that FSH increases the expression of VEGF by upregulating the expression of survivin, which is activated by the PI3K/AKT signaling pathway. Understanding the role of the PI3K/AKT pathway in FSH-stimulated expression of survivin and VEGF will be beneficial for evaluating the prognosis for patients with ovarian serous cystadenocarcinoma and for pursulug effective treatment against this disease.展开更多
OBJECTIVE: To explore the effect of two dominating signaling pathways, VEGF/KDR and angiopoietins/Tie2, on the formation of new blood vessel in hepatocellular carcinoma (HCC) growth and metastasis. METHODS: RT-PCR and...OBJECTIVE: To explore the effect of two dominating signaling pathways, VEGF/KDR and angiopoietins/Tie2, on the formation of new blood vessel in hepatocellular carcinoma (HCC) growth and metastasis. METHODS: RT-PCR and Western blot were employed to evaluate the VEGF/KDR and angiopoietins/Tie2 expression in samples from 23 patients with HCC. Meanwhile, microvessel density (MVD) was determined as a marker of angiogenesis by counting CD34 positive cells with the method of immunohistochemistry. RESULTS: The two pathways were activated in all HCC samples. The expressions of vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang2) were significantly higher (P<0.05) in hepatocellular carcinoma tissues and the margin of the tumor than those in control groups, and so did CD34 positive cells. Although significant difference in the expression of kinase insert domain containing receptor (KDR) and Ang1/Tie2 was not observed in all groups, their distinct high levels were seen in hepatoma and its margin compared with normal and cirrhotic liver. VEGF and Ang2 expressions were seen up-regulated in HCC with vascular invasion and satellite lesion. CONCLUSIONS: The two signaling pathways, VEGF/KDR and angiopoietins/Tie2 are activated in the process of angiogenesis in HCC and modulate the formation of new blood vessels. The imparity of the two signaling pathways' activation is to benefit HCC metastasis. In the two pathways, VEGF and Ang2 may play an important role in the process of angiogenesis, and are necessary indicators for the prognosis and metastasis of HCC. This study provides another clue for the exploration of anti-angiogenic agents.展开更多
Angiogenesis in atherosclerosis(AS)promotes plaque destabilization.miR-126 has a significant role in angiogenesis.Tetramethylpyrazine(TMP)and paeoniflorin(PF)have anti-atherosclerotic effects.However,the miR-126-relat...Angiogenesis in atherosclerosis(AS)promotes plaque destabilization.miR-126 has a significant role in angiogenesis.Tetramethylpyrazine(TMP)and paeoniflorin(PF)have anti-atherosclerotic effects.However,the miR-126-related mechanisms of TMP and PF combination(TMP-PF)on angiogenesis in AS have not been understood.To explore the mechanism of TMP-PF on angiogenesis in AS targeting miR-126.Human umbilical vein endothelial cells(HUVECs)were assigned into the control,model,TMP-PF,TMP-PF+miR-126 inhibitor,and simvastatin groups.HUVECs were transfected with miR-126 inhibitor or negative control,incubated with oxidized low-density lipoprotein(ox-LDL)to establish AS model,and then treated with TMP-PF or simvastatin.Cell proliferation,migration,and tube formation assays are conducted,and the expression of angiogenesis-related factors were detected by enzyme-linked immunosorbent assay(ELISA)and Western blotting.The expression level of miR-126 was confirmed by polymerase chain reaction(PCR).0x-LDL promoted HUVECs proliferation,migration,and tube formation,downregulated miR-126 expression,and increased the expression of VEGF,VEGFR2,bFGF,and FGFR1.TMP-PF inhibited proliferation,migration,and tube formation,upregulated miR-126 expression and decreased the expression of VEGF,VEGFR2,bFGF,and FGFR1 in ox-LDL-induced HUVECs.However,the effects of TMP-PF on angiogenesis and the expression of miR-126,VEGF,VEGFR2,and FGFR1 were abolished by miR-126 inhibitor.TMP-PF suppressed angiogenesis in AS by regulating miR-126/VEGF/VEGFR2 pathway,which might elucidate the underlying mechanism of TMP-PF in alleviating AS.展开更多
A preliminary study on the interaction of G protein (guanine triphosphate binding pro- tein) b1g2 subunits and their coupled components in cell signal transduction was conducted in vitro. The insect cell lines, Sf9 (S...A preliminary study on the interaction of G protein (guanine triphosphate binding pro- tein) b1g2 subunits and their coupled components in cell signal transduction was conducted in vitro. The insect cell lines, Sf9 (Spodoptera frugiperda) and H5 (Trichoplusia ni ) were used to express the recombinant protein Gb1g2. The cell membrane containing Gb1g2 was isolated through affinity chromatography column with Ni-NTA agarose by FPLC method, and the highly purified protein was obtained. The adenylyl cyclase 2 (AC2) activity assay showed that the purified Gb1g2 could signifi-cantly stimulate AC2 activity. The interaction of b1g2 subunits of G protein with the cytoplasmic tail of various mammalian adenylyl cyclases was monitored by BIAcore technology using NTA sensor chip, which relies on the phenomenon of surface plasmon resonance (SPR). The experiments showed the direct binding of Gb1g2 to the cytoplasmic tail C2 domain of AC2. The specific binding domain of AC2 with Gb1g2 was the same as AC2 activity domain which was stimulated by Gb1g2.展开更多
基金supported by a grant from the Education Department of Hebei Province (Mechanism of GH/IGF-1 and protective effects of sericin on gonadal axis lesions in diabetes mellitus), No. 2006301a grant from Science and Technology Department of Hebei Province (Protective effects of sericin on testicular dysfunction in diabetes mellitus), No. 08276101D-19
文摘In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.
文摘In biology, signal transduction refers to a process by which a cell converts one kind of signal or stimulus into another. It involves ordered sequences of biochemical reactions inside the cell. These cascades of reactions are carried out by enzymes and activated by second messengers. Signal transduction pathways are complex in nature. Each pathway is responsible for tuning one or more biological functions in the intracellular environment as well as more than one pathway interact among themselves to carry forward a single biological function. Such kind of behavior of these pathways makes understanding difficult. Hence, for the sake of simplicity, they need to be partitioned into smaller modules and then analyzed. We took VEGF signaling pathway, which is responsible for angiogenesis for this kind of modularized study. Modules were obtained by applying the algorithm of Nayak and De (Nayak and De, 2007) for different complexity values. These sets of modules were compared among themselves to get the best set of modules for an optimal complexity value. The best set of modules compared with four different partitioning algorithms namely, Farhat’s (Farhat, 1998), Greedy (Chartrand and Oellermann, 1993), Kernighan-Lin’s (Kernighan and Lin, 1970) and Newman’s community finding algorithm (Newman, 2006). These comparisons enabled us to decide which of the aforementioned algorithms was the best one to create partitions from human VEGF signaling pathway. The optimal complexity value, on which the best set of modules was obtained, was used to get modules from different species for comparative study. Comparison among these modules would shed light on the trend of development of VEGF signaling pathway over these species.
文摘There is evidence to suggest that follicle-stimulating hormone (FSH) can facilitate the neovascularization of ovarian cancers by increasing vascular endothelial growth factor (VEGF) expression in cancer cells, although the underlying molecular mechanism of this process is not well known. Therefore, we investigated the effect of FSH on VEGF expression in the ovarian cancer cell lines SKOV-3 and ES-2. Treatment with FSH significantly increased VEGF expression in a dose- and time-dependent manner. In addition, FSH treatment enhanced the expression of survivin and hypoxlainducible factor-1 (HIF-1α). Knockdown of survivin or HIF-1α suppressed VEGF expression, but only knockdown of survivin inhibited FSH-stimulated VEGF expression. Pretreatment with LY294002, a phosphoinositide 3-kinase (PI3K)/AKT inhibitor, neutralized the enhanced expression of survivin induced by FSH, but treatment with U0126, a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, had no such effect. We further showed that ovarian serous cystadenocarcinoma samples had much higher incidence of positive AKT and phosphorylated AKT (pAKT) protein staining than did benign ovarian cystadenoma samples (p 〈 0.01). The 5-year survival rate was only about 15% in patients with ovarian serous cystadenocarcinoma who had AKT and pAKT expression, whereas it was about 80% in those who did not have AKT or pAKT expression. Taken together, these results indicate that FSH increases the expression of VEGF by upregulating the expression of survivin, which is activated by the PI3K/AKT signaling pathway. Understanding the role of the PI3K/AKT pathway in FSH-stimulated expression of survivin and VEGF will be beneficial for evaluating the prognosis for patients with ovarian serous cystadenocarcinoma and for pursulug effective treatment against this disease.
文摘OBJECTIVE: To explore the effect of two dominating signaling pathways, VEGF/KDR and angiopoietins/Tie2, on the formation of new blood vessel in hepatocellular carcinoma (HCC) growth and metastasis. METHODS: RT-PCR and Western blot were employed to evaluate the VEGF/KDR and angiopoietins/Tie2 expression in samples from 23 patients with HCC. Meanwhile, microvessel density (MVD) was determined as a marker of angiogenesis by counting CD34 positive cells with the method of immunohistochemistry. RESULTS: The two pathways were activated in all HCC samples. The expressions of vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang2) were significantly higher (P<0.05) in hepatocellular carcinoma tissues and the margin of the tumor than those in control groups, and so did CD34 positive cells. Although significant difference in the expression of kinase insert domain containing receptor (KDR) and Ang1/Tie2 was not observed in all groups, their distinct high levels were seen in hepatoma and its margin compared with normal and cirrhotic liver. VEGF and Ang2 expressions were seen up-regulated in HCC with vascular invasion and satellite lesion. CONCLUSIONS: The two signaling pathways, VEGF/KDR and angiopoietins/Tie2 are activated in the process of angiogenesis in HCC and modulate the formation of new blood vessels. The imparity of the two signaling pathways' activation is to benefit HCC metastasis. In the two pathways, VEGF and Ang2 may play an important role in the process of angiogenesis, and are necessary indicators for the prognosis and metastasis of HCC. This study provides another clue for the exploration of anti-angiogenic agents.
基金supported by the National Natural Science Foundation of China(82004193)CACMS Innovation Fund(CI 2021A00914)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ14-YQ-007).
文摘Angiogenesis in atherosclerosis(AS)promotes plaque destabilization.miR-126 has a significant role in angiogenesis.Tetramethylpyrazine(TMP)and paeoniflorin(PF)have anti-atherosclerotic effects.However,the miR-126-related mechanisms of TMP and PF combination(TMP-PF)on angiogenesis in AS have not been understood.To explore the mechanism of TMP-PF on angiogenesis in AS targeting miR-126.Human umbilical vein endothelial cells(HUVECs)were assigned into the control,model,TMP-PF,TMP-PF+miR-126 inhibitor,and simvastatin groups.HUVECs were transfected with miR-126 inhibitor or negative control,incubated with oxidized low-density lipoprotein(ox-LDL)to establish AS model,and then treated with TMP-PF or simvastatin.Cell proliferation,migration,and tube formation assays are conducted,and the expression of angiogenesis-related factors were detected by enzyme-linked immunosorbent assay(ELISA)and Western blotting.The expression level of miR-126 was confirmed by polymerase chain reaction(PCR).0x-LDL promoted HUVECs proliferation,migration,and tube formation,downregulated miR-126 expression,and increased the expression of VEGF,VEGFR2,bFGF,and FGFR1.TMP-PF inhibited proliferation,migration,and tube formation,upregulated miR-126 expression and decreased the expression of VEGF,VEGFR2,bFGF,and FGFR1 in ox-LDL-induced HUVECs.However,the effects of TMP-PF on angiogenesis and the expression of miR-126,VEGF,VEGFR2,and FGFR1 were abolished by miR-126 inhibitor.TMP-PF suppressed angiogenesis in AS by regulating miR-126/VEGF/VEGFR2 pathway,which might elucidate the underlying mechanism of TMP-PF in alleviating AS.
基金This work was sup-ported by the National Natural Science Foundation of China (Grant No. 30170615) and National Major Basis Study Develop-mental Plan 973 Project (TG2000016208).
文摘A preliminary study on the interaction of G protein (guanine triphosphate binding pro- tein) b1g2 subunits and their coupled components in cell signal transduction was conducted in vitro. The insect cell lines, Sf9 (Spodoptera frugiperda) and H5 (Trichoplusia ni ) were used to express the recombinant protein Gb1g2. The cell membrane containing Gb1g2 was isolated through affinity chromatography column with Ni-NTA agarose by FPLC method, and the highly purified protein was obtained. The adenylyl cyclase 2 (AC2) activity assay showed that the purified Gb1g2 could signifi-cantly stimulate AC2 activity. The interaction of b1g2 subunits of G protein with the cytoplasmic tail of various mammalian adenylyl cyclases was monitored by BIAcore technology using NTA sensor chip, which relies on the phenomenon of surface plasmon resonance (SPR). The experiments showed the direct binding of Gb1g2 to the cytoplasmic tail C2 domain of AC2. The specific binding domain of AC2 with Gb1g2 was the same as AC2 activity domain which was stimulated by Gb1g2.