期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Quantifying Design Parameters of Symbology Page for Automotive Head up Display
1
作者 Gupta Sharad Karar Vinod +2 位作者 Saini Surender Singh Jaggi Neena Bajpai Phun Phun 《Computer Technology and Application》 2011年第8期658-662,共5页
This paper gives an overview of studies on parameters displayed on the Automotive Head Up Display (A-HUD) including calculation and construction of symbology page based on study results. A study has been made on vit... This paper gives an overview of studies on parameters displayed on the Automotive Head Up Display (A-HUD) including calculation and construction of symbology page based on study results. A study has been made on vital parameters required for car drivers and design calculations have been made based on design parameters like field of view, distance from the design eye position, minimum character size viewable from a distance of 1.5m between driver and the projected image, and optical magnification factor. lhe display format suitable for A-HUD applications depends upon the parameters required to be displayed. The aspect ratio chosen is 4:3. This paper also provides method to design the symbology page embedding six vital parameters with their relative positioning and size considering relative position between display device and optical elements which has been considered with a magnification factor of 2.5. The field of view obtained is 6.7° × 4.8°. 展开更多
关键词 Automotive head up display (A-HUD) MAGNIFICATION symbology character size human factors field of view (FOV). design eye position (DEP).
下载PDF
新型歼击机平视显示器指示符号优化实验研究 被引量:3
2
作者 伊丽 郭小朝 +2 位作者 李嵘 王鹤 武国城 《人类工效学》 2010年第3期24-26,共3页
为优化平视显示器(HUD)信息显示界面,对不同来源的指示信息指示符进行兼容显示设计,以满足飞行员的基本使用要求和认知操作特点。将初步筛选出的13个指示符,采用实验心理学对偶比较法,通过计算机编程配对呈现,由飞行员对比选优。将结果... 为优化平视显示器(HUD)信息显示界面,对不同来源的指示信息指示符进行兼容显示设计,以满足飞行员的基本使用要求和认知操作特点。将初步筛选出的13个指示符,采用实验心理学对偶比较法,通过计算机编程配对呈现,由飞行员对比选优。将结果进行描述性统计,然后转换为标准Z分数排序。通过优化实验研究,得到飞行员选择分数的排序及Z分数等距量表。7个指示符有50%以上的概率被飞行员选中。对不同来源指示信息兼容显示设计时,可依据本等距量表进行优化选择。 展开更多
关键词 歼击机 平视显示器 显示符 飞行员
下载PDF
液晶字符识别的CNN和SVM组合分类器 被引量:6
3
作者 刘昶 徐超远 +1 位作者 张鑫 薛磊 《图学学报》 CSCD 北大核心 2021年第1期15-22,共8页
针对仪表液晶显示字符识别问题,提出一种结合了卷积神经网络(CNN)和支持向量机(SVM)的字符识别方法。分别采用具有并联结构的CNN模型和基于梯度方向直方图(HOG)特征的SVM方法构建基本分类器,当2个分类器的结果存在冲突时,利用CNN的soft... 针对仪表液晶显示字符识别问题,提出一种结合了卷积神经网络(CNN)和支持向量机(SVM)的字符识别方法。分别采用具有并联结构的CNN模型和基于梯度方向直方图(HOG)特征的SVM方法构建基本分类器,当2个分类器的结果存在冲突时,利用CNN的softmax输出最大值判决最终结果,当其大于设定阈值时采用CNN分类器的结果,反之采用SVM分类器的结果。建立字符图像的误差模型并利用仿真方法构建了数据集用于分类器的训练和测试,给出一种基于投票原理的最优阈值的估计算法。在MNIST和仿真数据集上的测试实验结果表明,最优阈值估计算法的结果可靠,组合分类器的准确率较2种单一分类器均有提高,在实际测试系统上其准确率达到99.81%,验证了该组合分类器方法对液晶字符识别问题的有效性;在CIFAR-10数据集上的实验结果验证了该方法也可用于其他分类问题。 展开更多
关键词 计算机视觉 机器学习 液晶字符识别 支持向量机 卷积神经网络
下载PDF
Design of recognition algorithm for multiclass digital display instrument based on convolution neural network
4
作者 Xuanzhang Wen Yuxia Wang +3 位作者 Qiuguo Zhu Jun Wu Rong Xiong Anhuan Xie 《Biomimetic Intelligence & Robotics》 EI 2023年第3期67-74,共8页
Digital display instrument identification is a crucial approach for automating the collection of digital display data.In this study,we propose a digital display area detection CTPNpro algorithm to address the problem ... Digital display instrument identification is a crucial approach for automating the collection of digital display data.In this study,we propose a digital display area detection CTPNpro algorithm to address the problem of recognizing multiclass digital display instruments.We developed a multiclass digital display instrument recognition algorithm by combining the character recognition network constructed using a convolutional neural network and bidirectional variable-length long short-term memory(LSTM).First,the digital display region detection CTPNpro network framework was designed based on the CTPN network architecture by introducing feature fusion and residual structure.Next,the digital display instrument identification network was constructed based on a convolutional neural network using twoway LSTM and Connectionist temporal classification(CTC)of indefinite length.Finally,an automatic calibration system for digital display instruments was built,and a multiclass digital display instrument dataset was constructed by sampling in the system.We compared the performance of the CTPNpro algorithm with other methods using this dataset to validate the effectiveness and robustness of the proposed algorithm. 展开更多
关键词 Multiclass display instrument Digital display area detection character recognition Convolutional neural network characteristics of the fusion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部