期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Influences of the Helical Strake Cross-Section Shape on Vortex-Induced Vibrations Suppression for A Long Flexible Cylinder 被引量:9
1
作者 XU Wan-hai LUAN Ying-sen +1 位作者 LIU Li-qin WU Ying-xiang 《China Ocean Engineering》 SCIE EI CSCD 2017年第4期438-446,共9页
An experimental study on a bare flexible cylinder as well as cylinders fitted with two types of cross-sectioned helical strakes was carried out in a towing tank. The main purpose of this paper is to investigate the ef... An experimental study on a bare flexible cylinder as well as cylinders fitted with two types of cross-sectioned helical strakes was carried out in a towing tank. The main purpose of this paper is to investigate the effects of strakes’ cross-section on the vortex-induced vibrations (VIV) suppression of a flexible cylinder. The square-sectioned and round-sectioned helical strakes were selected in the experimental tests. The uniform current was generated by towing the cylinder models along the tank using a towing carriage. The Reynolds number was in the range of 800–16000. The strain responses were measured by the strain gages in cross-flow (CF) and in-line (IL) directions. A modal analysis method was adopted to obtain the displacement responses using the strain signals in different measurement positions. The comparison of the experimental results among the bare cylinder, square-sectioned straked cylinder and round-sectioned straked cylinder was performed. The helical strakes can effectively reduce the strain amplitude, displacement amplitude, response frequencies and dominant modes of a flexible cylinder excited by VIV. And the mean drag coefficients of straked cylinders were approximately consistent with each other. In addition, the square-sectioned and round-sectioned strakes nearly share the similar VIV reduction behaviors. Sometimes, the strakes with round-section represent more excellent effects on the VIV suppression of response frequency than those with square-section. 展开更多
关键词 helical strakes viv suppression cross-section shape flexible cylinder
下载PDF
Passive VIV Reduction of An Inclined Flexible Cylinder by Means of Helical Strakes with Round-Section 被引量:3
2
作者 XU Wan-hai QIN Wen-qi +1 位作者 HE Ming GAO Xi-feng 《China Ocean Engineering》 SCIE EI CSCD 2018年第4期413-421,共9页
A series of experimental tests of passive VIV suppression of an inclined flexible cylinder with round-sectioned helical strakes were carried out in a towing tank. During the tests, the cylinder models fitted with and ... A series of experimental tests of passive VIV suppression of an inclined flexible cylinder with round-sectioned helical strakes were carried out in a towing tank. During the tests, the cylinder models fitted with and without helical strakes were towed along the tank. The towing velocity ranged from 0.05 to 1.0 m/s with an interval of 0.05 m/s.Four different yaw angles(a=0°, 15°, 30° and 45°), defined as the angle between the axis of the cylinder and the plane orthogonal of the oncoming flow, were selected in the experiment. The main purpose of present experimental work is to further investigate the VIV suppression effectiveness of round-sectioned helical strakes on the inclined flexible cylinder. The VIV responses of the smooth cylinder and the cylinder with square-sectioned strakes under the same experimental condition were also presented for comparison. The experimental results indicated that the roundsectioned strake basically had a similar effect on VIV suppression compared with the square-sectioned one, and both can significantly reduce the VIV of the vertical cylinder which corresponded to the case of a=0°. But with the increase of yaw angle, the VIV suppression effectiveness of both round-and square-section strakes deteriorated dramatically, the staked cylinder even had a much stronger vibration than the smooth one did in the in-line(IL)direction. 展开更多
关键词 viv suppression Helical strakes inclined flexible cylinder yaw angle round-section
下载PDF
A review on flow-induced vibration of offshore circular cylinders 被引量:16
3
作者 Jia-song Wang Dixia Fan Ke Lin 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第3期415-440,共26页
As a fundamental fluid-structure interaction(FSI)phenomenon,vortex-induced vibrations(VIVs)of circular cylinders have been the center of the FSI research in the past several decades.Apart from its scientific significa... As a fundamental fluid-structure interaction(FSI)phenomenon,vortex-induced vibrations(VIVs)of circular cylinders have been the center of the FSI research in the past several decades.Apart from its scientific significance in rich physics,VIVs are paid great attentions by offshore engineers,as they are encountered in many ocean engineering applications.Recently,with the development of research and application,wake-induced vibration(WIV)for multiple cylinders and galloping for VIV suppression attachments are attracting a growing research interest.All these phenomena are connected with the flow-induced vibration(FIV).In this paper,we review and give some discussions on the FIV of offshore circular cylinders,including the research progress on the basic VIV mechanism of an isolated rigid or flexible cylinder,interference of multiple cylinders concerning WIV of multiple cylinders,practical VIV suppression and unwanted galloping for cylinder of attachments.Finally,we draw concluding remarks,give some comments and propose future research prospects,especially on the major challenges as well as potentials in the offline/online modelling and prediction of real-scale offshore structures with high-fidelity CFD methods,new experimental facilities and applications of artificial intelligence tools. 展开更多
关键词 Fluid-structure interaction(FSI) vortex induced vibration(viv) wake-induced vibration(WIV) flow-induced vibration(FIV) GALLOPING offshore engineering circular cylinder viv suppression
原文传递
Vortex-induced vibration response of a circular cylinder surrounded with small rods 被引量:1
4
作者 Liang-bin Xu Sheng-ping Liang +2 位作者 Zhong-ming Hu Zheng-li Liu Jia-song Wang 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第3期510-519,共10页
In this paper,cross-flow vortex-induced vibration(VIV)responses of a circular cylinder surrounded with different control rods have been investigated in a wind tunnel.The number of rods n is set equal to 3 and 6,and th... In this paper,cross-flow vortex-induced vibration(VIV)responses of a circular cylinder surrounded with different control rods have been investigated in a wind tunnel.The number of rods n is set equal to 3 and 6,and the ratios of diameters d/D(where d is the diameter of small rods,D is the cylinder diameter)are assumed to 0.10,0.16 and 0.20.The spacing ratios of s(s=G/D,where G is the gap distance between the main cylinder surface and the control rod surface)are selected as 0.2,0.4 and 0.6 respectively.The Reynolds number based on the main cylinder is in the region of Re=4000–42000.Results show that the VIV can be significant suppressed if placing the control rods in appropriate arrangement.And the gap between the rod and the main cylinder plays a more important role in the VIV amplitude response.When the spacing ratio between the rod and main cylinder is 0.2,VIV can be best suppressed by 96.7%.However,rods do not always suppress VIV and the responses can be more severe in other spacing ratios(s=0.4,0.6).And typical vortex shedding frequency lock-in phenomenon can be observed.When the spacing ratio is 0.2,other than the natural frequency component,St frequency is also presented in the frequency spectrum of wake velocity. 展开更多
关键词 Vortex-induced vibration(viv) control rods wind tunnel experiment viv suppression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部