Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource...Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource utilization.This paper proposes a prediction-basedmulti-objective VMconsolidation approach to search for the best mapping between VMs and PMs with good timeliness and practical value.We use a hybrid model based on Auto-Regressive Integrated Moving Average(ARIMA)and Support Vector Regression(SVR)(HPAS)as a prediction model and consolidate VMs to PMs based on prediction results by HPAS,aiming at minimizing the total EC,performance degradation(PD),migration cost(MC)and resource wastage(RW)simultaneously.Experimental results usingMicrosoft Azure trace show the proposed approach has better prediction accuracy and overcomes the multi-objective consolidation approach without prediction(i.e.,Non-dominated sorting genetic algorithm 2,Nsga2)and the renowned Overload Host Detection(OHD)approaches without prediction,such as Linear Regression(LR),Median Absolute Deviation(MAD)and Inter-Quartile Range(IQR).展开更多
Live Virtual Machine(VM)migration is one of the foremost techniques for progressing Cloud Data Centers’(CDC)proficiency as it leads to better resource usage.The workload of CDC is often dynamic in nature,it is better ...Live Virtual Machine(VM)migration is one of the foremost techniques for progressing Cloud Data Centers’(CDC)proficiency as it leads to better resource usage.The workload of CDC is often dynamic in nature,it is better to envisage the upcoming workload for early detection of overload status,underload status and to trigger the migration at an appropriate point wherein enough number of resources are available.Though various statistical and machine learning approaches are widely applied for resource usage prediction,they often failed to handle the increase of non-linear CDC data.To overcome this issue,a novel Hypergrah based Convolutional Deep Bi-Directional-Long Short Term Memory(CDB-LSTM)model is proposed.The CDB-LSTM adopts Helly property of Hypergraph and Savitzky–Golay(SG)filter to select informative samples and exclude noisy inference&outliers.The proposed approach optimizes resource usage prediction and reduces the number of migrations with minimal computa-tional complexity during live VM migration.Further,the proposed prediction approach implements the correlation co-efficient measure to select the appropriate destination server for VM migration.A Hypergraph based CDB-LSTM was vali-dated using Google cluster dataset and compared with state-of-the-art approaches in terms of various evaluation metrics.展开更多
基金funded by Science and Technology Department of Shaanxi Province,Grant Numbers:2019GY-020 and 2024JC-YBQN-0730.
文摘Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource utilization.This paper proposes a prediction-basedmulti-objective VMconsolidation approach to search for the best mapping between VMs and PMs with good timeliness and practical value.We use a hybrid model based on Auto-Regressive Integrated Moving Average(ARIMA)and Support Vector Regression(SVR)(HPAS)as a prediction model and consolidate VMs to PMs based on prediction results by HPAS,aiming at minimizing the total EC,performance degradation(PD),migration cost(MC)and resource wastage(RW)simultaneously.Experimental results usingMicrosoft Azure trace show the proposed approach has better prediction accuracy and overcomes the multi-objective consolidation approach without prediction(i.e.,Non-dominated sorting genetic algorithm 2,Nsga2)and the renowned Overload Host Detection(OHD)approaches without prediction,such as Linear Regression(LR),Median Absolute Deviation(MAD)and Inter-Quartile Range(IQR).
文摘Live Virtual Machine(VM)migration is one of the foremost techniques for progressing Cloud Data Centers’(CDC)proficiency as it leads to better resource usage.The workload of CDC is often dynamic in nature,it is better to envisage the upcoming workload for early detection of overload status,underload status and to trigger the migration at an appropriate point wherein enough number of resources are available.Though various statistical and machine learning approaches are widely applied for resource usage prediction,they often failed to handle the increase of non-linear CDC data.To overcome this issue,a novel Hypergrah based Convolutional Deep Bi-Directional-Long Short Term Memory(CDB-LSTM)model is proposed.The CDB-LSTM adopts Helly property of Hypergraph and Savitzky–Golay(SG)filter to select informative samples and exclude noisy inference&outliers.The proposed approach optimizes resource usage prediction and reduces the number of migrations with minimal computa-tional complexity during live VM migration.Further,the proposed prediction approach implements the correlation co-efficient measure to select the appropriate destination server for VM migration.A Hypergraph based CDB-LSTM was vali-dated using Google cluster dataset and compared with state-of-the-art approaches in terms of various evaluation metrics.