In this paper, we prove that the weak solutions u∈Wloc^1, p (Ω) (1 〈p〈∞) of the following equation with vanishing mean oscillation coefficients A(x): -div[(A(x)△↓u·△↓u)p-2/2 A(x)△↓u+│F(...In this paper, we prove that the weak solutions u∈Wloc^1, p (Ω) (1 〈p〈∞) of the following equation with vanishing mean oscillation coefficients A(x): -div[(A(x)△↓u·△↓u)p-2/2 A(x)△↓u+│F(x)│^p-2 F(x)]=B(x, u, △↓u), belong to Wloc^1, q (Ω)(A↓q∈(p, ∞), provided F ∈ Lloc^q(Ω) and B(x, u, h) satisfies proper growth conditions where Ω ∪→R^N(N≥2) is a bounded open set, A(x)=(A^ij(x)) N×N is a symmetric matrix function.展开更多
基金supported by National Natural Science Foundation of China(10371021)
文摘In this paper, we prove that the weak solutions u∈Wloc^1, p (Ω) (1 〈p〈∞) of the following equation with vanishing mean oscillation coefficients A(x): -div[(A(x)△↓u·△↓u)p-2/2 A(x)△↓u+│F(x)│^p-2 F(x)]=B(x, u, △↓u), belong to Wloc^1, q (Ω)(A↓q∈(p, ∞), provided F ∈ Lloc^q(Ω) and B(x, u, h) satisfies proper growth conditions where Ω ∪→R^N(N≥2) is a bounded open set, A(x)=(A^ij(x)) N×N is a symmetric matrix function.