To solve the problems associated with low resolution and high computational effort infinite time,this paper proposes a fast forward modeling method for muon energy loss transmission tomography based on a model voxeliza...To solve the problems associated with low resolution and high computational effort infinite time,this paper proposes a fast forward modeling method for muon energy loss transmission tomography based on a model voxelization energy loss projection algorithm.First,the energy loss equation for muon transmission tomography is derived from the Bethe–Bloch formula,and the imaging region is then dissected into several units using the model voxelization method.Thereafter,the three-dimensional(3-D)imaging model is discretized into parallel and equally spaced two-dimensional(2-D)slices using the model layering method to realize a dimensional reduction of the 3-D volume data and accelerate the forward calculation speed.Subsequently,the muon energy loss transmission tomography equation is discretized using the ray energy loss projection method to establish a set of energy loss equations for the muon penetration voxel model.Finally,the muon energy loss values at the outgoing point are obtained by solving the projection coefficient matrix of the ray length-weighted model,achieving a significant reduction in the number of muons and improving the computational efficiency.A comparison of our results with the simulation results based on the Monte Carlo method verifies the accuracy and effectiveness of the algorithm proposed in this paper.The metallic mineral identification tests show that the proposed algorithm can quickly identify high-density metallic minerals.The muon energy loss response can accurately identify the boundary of the anomalies and their spatial distribution characteristics.展开更多
The motion of a lure in water is investigated experimentally and numerically.The lure motion in water of apassing water tank is observed,and the periodic motion is found.From the Fourier analysis,it is found that the ...The motion of a lure in water is investigated experimentally and numerically.The lure motion in water of apassing water tank is observed,and the periodic motion is found.From the Fourier analysis,it is found that the frequency with the largest amplitude in the lateral direction depends on the lip width of the lure.To understand the lure dynamics,a numerical simulation of the flow field around the lure is performed.The shape is measured using an X-ray computer tomography and converted into a voxel model.From visualization,it is found that vortex sheds from its lip correspond to the vibration frequency of the lure.展开更多
The numerical simulation of internal features,such as inclusions and voids,is important to analyze their impact on the performance of composite materials.However,the complex geometries of internal features and the ind...The numerical simulation of internal features,such as inclusions and voids,is important to analyze their impact on the performance of composite materials.However,the complex geometries of internal features and the induced continuous-discontinuous(C-D)deformation fields are challenges to their numerical simulation.In this study,a 3D approach using a simple mesh to simulate irregular internal geometries is developed for the first time.With the help of a developed voxel crack model,image models that are efficient when recording complex geometries are directly imported into the simulation.Surface reconstructions,which are usually labor-intensive,are excluded from this approach.Moreover,using image models as the geometric input,image processing techniques are applied to detect material interfaces and develop contact pairs.Then,the C-D deformations of the complex internal features are directly calculated based on the numerical manifold method.The accuracy and convergence of the developed3D approach are examined based on multiple benchmarks.Successful 3D C-D simulation of sandstones with naturally formed complex microfeatures demonstrates the capability of the developed approach.展开更多
In the field of 3D model matching and retrieval,an effective method for feature extraction is spherical harmonic or its mutations,and is acted on the spherical images.But the obtainment of spherical images from 3D mod...In the field of 3D model matching and retrieval,an effective method for feature extraction is spherical harmonic or its mutations,and is acted on the spherical images.But the obtainment of spherical images from 3D models is very time-consuming,which greatly restrains the responding speed of such systems.In this paper, we propose a quantitative evaluation of the whole process and give a detailed two-sided analysis based on the comparative size between pixels and voxels.The experiments show that the resultant optimized parameters are fit for the practical application and exhibit a satisfactory performance.展开更多
In this paper,we make an improvement on the conventional visual hull reconstruction method that runs on a single consumer graphics card.The target application is a high-precision diamond inclusion reconstruction syste...In this paper,we make an improvement on the conventional visual hull reconstruction method that runs on a single consumer graphics card.The target application is a high-precision diamond inclusion reconstruction system.One major contribution of this paper is an evaluation system of voxels for high-precision reconstruction.In contrast to existing approaches,it allows us to reconstruct the thin structure of the diamond inclusion.Based on this,we obtain a significant improvement in reconstruction precision,especially for thin inclusion.展开更多
基金supported by the National Key Research and Development Project of China (2016YFC0303104)the National Natural Science Foundation of China(41304090)。
文摘To solve the problems associated with low resolution and high computational effort infinite time,this paper proposes a fast forward modeling method for muon energy loss transmission tomography based on a model voxelization energy loss projection algorithm.First,the energy loss equation for muon transmission tomography is derived from the Bethe–Bloch formula,and the imaging region is then dissected into several units using the model voxelization method.Thereafter,the three-dimensional(3-D)imaging model is discretized into parallel and equally spaced two-dimensional(2-D)slices using the model layering method to realize a dimensional reduction of the 3-D volume data and accelerate the forward calculation speed.Subsequently,the muon energy loss transmission tomography equation is discretized using the ray energy loss projection method to establish a set of energy loss equations for the muon penetration voxel model.Finally,the muon energy loss values at the outgoing point are obtained by solving the projection coefficient matrix of the ray length-weighted model,achieving a significant reduction in the number of muons and improving the computational efficiency.A comparison of our results with the simulation results based on the Monte Carlo method verifies the accuracy and effectiveness of the algorithm proposed in this paper.The metallic mineral identification tests show that the proposed algorithm can quickly identify high-density metallic minerals.The muon energy loss response can accurately identify the boundary of the anomalies and their spatial distribution characteristics.
基金supported in part by Tokyo Denki University Science Promotion Fund(Q12K-04)
文摘The motion of a lure in water is investigated experimentally and numerically.The lure motion in water of apassing water tank is observed,and the periodic motion is found.From the Fourier analysis,it is found that the frequency with the largest amplitude in the lateral direction depends on the lip width of the lure.To understand the lure dynamics,a numerical simulation of the flow field around the lure is performed.The shape is measured using an X-ray computer tomography and converted into a voxel model.From visualization,it is found that vortex sheds from its lip correspond to the vibration frequency of the lure.
基金supported by the National Natural Science Foundation of China(Grant Nos.41807277,42172306,and U1965204)the Natural Science Foundation of Hebei Province(Grant No.D2019202440)。
文摘The numerical simulation of internal features,such as inclusions and voids,is important to analyze their impact on the performance of composite materials.However,the complex geometries of internal features and the induced continuous-discontinuous(C-D)deformation fields are challenges to their numerical simulation.In this study,a 3D approach using a simple mesh to simulate irregular internal geometries is developed for the first time.With the help of a developed voxel crack model,image models that are efficient when recording complex geometries are directly imported into the simulation.Surface reconstructions,which are usually labor-intensive,are excluded from this approach.Moreover,using image models as the geometric input,image processing techniques are applied to detect material interfaces and develop contact pairs.Then,the C-D deformations of the complex internal features are directly calculated based on the numerical manifold method.The accuracy and convergence of the developed3D approach are examined based on multiple benchmarks.Successful 3D C-D simulation of sandstones with naturally formed complex microfeatures demonstrates the capability of the developed approach.
基金the National Natural Science Foundation of China(No.60903111)
文摘In the field of 3D model matching and retrieval,an effective method for feature extraction is spherical harmonic or its mutations,and is acted on the spherical images.But the obtainment of spherical images from 3D models is very time-consuming,which greatly restrains the responding speed of such systems.In this paper, we propose a quantitative evaluation of the whole process and give a detailed two-sided analysis based on the comparative size between pixels and voxels.The experiments show that the resultant optimized parameters are fit for the practical application and exhibit a satisfactory performance.
基金The work is supported by the NSF of China(No.11871447)Anhui Initiative in Quantum Information Technologies(AHY150200).
文摘In this paper,we make an improvement on the conventional visual hull reconstruction method that runs on a single consumer graphics card.The target application is a high-precision diamond inclusion reconstruction system.One major contribution of this paper is an evaluation system of voxels for high-precision reconstruction.In contrast to existing approaches,it allows us to reconstruct the thin structure of the diamond inclusion.Based on this,we obtain a significant improvement in reconstruction precision,especially for thin inclusion.