期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cytosolic Ca^2+ Signals Enhance the Vacuolar Ion Conductivity of Bulging Arabidopsis Root Hair Cells 被引量:1
1
作者 Yi Wang Julian Dindas +6 位作者 Florian Rienmuller Melanie Krebs Rainer Waadt Karin Schumacher Wei-Hua Wu Rainer Hedrichl M. Rob G. Roelfsema 《Molecular Plant》 SCIE CAS CSCD 2015年第11期1665-1674,共10页
Plant cell expansion depends on the uptake of solutes across the plasma membrane and their storage within the vacuole. In contrast to the well-studied plasma membrane, little is known about the regulation of ion trans... Plant cell expansion depends on the uptake of solutes across the plasma membrane and their storage within the vacuole. In contrast to the well-studied plasma membrane, little is known about the regulation of ion transport at the vacuolar membrane. We therefore established an experimental approach to study vacuolar ion transport in intact Arabidopsis root cells, with multi-barreled microelectrodes. The subcellular position of electrodes was detected by imaging current-injected fluorescent dyes. Comparison of measurements with electrodes in the cytosol and vacuole revealed an average vacuolar membrane potential of -31 inV. Voltage clamp recordings of single vacuoles resolved the activity of voltage-independent and slowly deactivating channels. In bulging root hairs that express the Ca2+ sensor R-GECO1, rapid elevation of the cytosolic Ca^2+ concentration was observed, after impalement with microelectrodes, or injection of the Ca^2+ chelator BAPTA. Elevation of the cytosolic Ca^2+ level stimulated the activity of voltage- independent channels in the vacuolar membrane. Likewise, the vacuolar ion conductance was enhanced during a sudden increase of the cytosolic Ca^2+ level in cells injected with fluorescent Ca^2+ indicator FURA-2. These data thus show that cytosolic Ca^2+ signals can rapidly activate vacuolar ion channels, which may prevent rupture of the vacuolar membrane, when facing mechanical forces. 展开更多
关键词 ELECTROPHYSIOLOGY ion channels calcium signaling/transport fluorescence imaging Arabidopsis vacuolar membrane
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部