This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of ...This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of (G'/G)-expansion given by Wang et al recently. As an application of this new method, we study the well-known Vakhnenko equation which describes the propagation of high-frequency waves in a relaxing medium. With two new expansions, general types of soliton solutions and periodic solutions for Vakhnenko equation are obtained.展开更多
A non-traveling wave solution of a generalized Vakhnenko equation arising from the high-frequent wave motion in a relaxing medium is derived via the extended Riccati mapping method.The solution includes an arbitrary f...A non-traveling wave solution of a generalized Vakhnenko equation arising from the high-frequent wave motion in a relaxing medium is derived via the extended Riccati mapping method.The solution includes an arbitrary function of an independent variable.Based on the solution,two hyperbolic functions are chosen to construct new solitons.Novel single-loop-like and double-loop-like solitons are found for the equation.展开更多
文摘This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of (G'/G)-expansion given by Wang et al recently. As an application of this new method, we study the well-known Vakhnenko equation which describes the propagation of high-frequency waves in a relaxing medium. With two new expansions, general types of soliton solutions and periodic solutions for Vakhnenko equation are obtained.
基金Project supported by the Scientific Research Common Program of Beijing Municipal Commission of Education,China (Grant No. KM201010011001),PHR(Grant No. 201106206)the Funding Project for Innovation on Science,Technology and Graduate Education in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality,China (Grant Nos. 201098,PXM2012 014213 000087,PXM2012 014213 000037,and PXM2012 014213 000079)
文摘A non-traveling wave solution of a generalized Vakhnenko equation arising from the high-frequent wave motion in a relaxing medium is derived via the extended Riccati mapping method.The solution includes an arbitrary function of an independent variable.Based on the solution,two hyperbolic functions are chosen to construct new solitons.Novel single-loop-like and double-loop-like solitons are found for the equation.