To ensure the security of resource and intelligence sharing in 6G,blockchain has been widely adopted in wireless communications and applications.Although blockchain can ensure the traceability and non-tamperability of...To ensure the security of resource and intelligence sharing in 6G,blockchain has been widely adopted in wireless communications and applications.Although blockchain can ensure the traceability and non-tamperability of data in the concatenated blocks,it cannot guarantee the honest behaviors of users in the application before the generation of transactions.Thus,additional technologies are required to ensure that the source of blockchain data is reliable.In this paper,the detailed procedure is designed for the application-oriented task validation in the blockchainenhanced computing resource sharing and transactions in ultra dense networks(UDN).The corresponding queuing model is built and analyzed with the consideration of the wireless re-transmission and the probability of malicious deception by users.Based on the analysis results,the UDN deployment is optimized to save network cost while ensuring latency performance.Numerical results verify our analysis,and the optimized system deployment including the number and service capacities of both base stations and mobile edge computing(MEC)servers are also given with various system settings.展开更多
文摘To ensure the security of resource and intelligence sharing in 6G,blockchain has been widely adopted in wireless communications and applications.Although blockchain can ensure the traceability and non-tamperability of data in the concatenated blocks,it cannot guarantee the honest behaviors of users in the application before the generation of transactions.Thus,additional technologies are required to ensure that the source of blockchain data is reliable.In this paper,the detailed procedure is designed for the application-oriented task validation in the blockchainenhanced computing resource sharing and transactions in ultra dense networks(UDN).The corresponding queuing model is built and analyzed with the consideration of the wireless re-transmission and the probability of malicious deception by users.Based on the analysis results,the UDN deployment is optimized to save network cost while ensuring latency performance.Numerical results verify our analysis,and the optimized system deployment including the number and service capacities of both base stations and mobile edge computing(MEC)servers are also given with various system settings.