This paper proposes application of a catfish particle swarm optimization (PSO) algorithm to economic dispatch (ED) problems. The ED problems considered in this paper include valve-point loading effect, power balan...This paper proposes application of a catfish particle swarm optimization (PSO) algorithm to economic dispatch (ED) problems. The ED problems considered in this paper include valve-point loading effect, power balance constraints, and generator limits. The conventional PSO and catfish PSO algorithms are applied to three different test systems and the solutions obtained are compared with each other and with those reported in literature. The comparison of solutions shows that catfish PSO outperforms the conventional PSO and other methods in terms of solution quality though there is a slight increase in computational time.展开更多
Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the foss...Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the fossil fuel-based power systems more practical.In order to achieve an accurate economical schedule,valve point loading effect,ramp rate constraints,and prohibited operating zones are being considered for realistic scenarios.In this paper,an improved,and modified version of conventional particle swarm optimization(PSO),called Oscillatory PSO(OPSO),is devised to provide a cheaper schedule with optimum cost.The conventional PSO is improved by deriving a mechanism enabling the particle towards the trajectories of oscillatory motion to acquire the entire search space.A set of differential equations is implemented to expose the condition for trajectory motion in oscillation.Using adaptive inertia weights,this OPSO method provides an optimized cost of generation as compared to the conventional particle swarm optimization and other new meta-heuristic approaches.展开更多
In this paper the invasive weed optimization algorithm has been applied to a variety of economic dispatch (ED) problems. The ED problem is concerned with minimizing the fuel cost by optimally loading the electrical ...In this paper the invasive weed optimization algorithm has been applied to a variety of economic dispatch (ED) problems. The ED problem is concerned with minimizing the fuel cost by optimally loading the electrical generators which are committed to supply a given demand. Some involve prohibited operating zones, transmission losses and valve point loading. In general, they are non-linear non-convex optimization problems which cannot be directly solved by conventional methods. In this work the invasive weed algorithm, a meta-heuristic method inspired by the proliferation of weeds, has been applied to four numerical examples and has resulted in promising solutions compared to published results.展开更多
文摘This paper proposes application of a catfish particle swarm optimization (PSO) algorithm to economic dispatch (ED) problems. The ED problems considered in this paper include valve-point loading effect, power balance constraints, and generator limits. The conventional PSO and catfish PSO algorithms are applied to three different test systems and the solutions obtained are compared with each other and with those reported in literature. The comparison of solutions shows that catfish PSO outperforms the conventional PSO and other methods in terms of solution quality though there is a slight increase in computational time.
基金The authors are grateful to the Raytheon Chair for Systems Engineering for funding.
文摘Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the fossil fuel-based power systems more practical.In order to achieve an accurate economical schedule,valve point loading effect,ramp rate constraints,and prohibited operating zones are being considered for realistic scenarios.In this paper,an improved,and modified version of conventional particle swarm optimization(PSO),called Oscillatory PSO(OPSO),is devised to provide a cheaper schedule with optimum cost.The conventional PSO is improved by deriving a mechanism enabling the particle towards the trajectories of oscillatory motion to acquire the entire search space.A set of differential equations is implemented to expose the condition for trajectory motion in oscillation.Using adaptive inertia weights,this OPSO method provides an optimized cost of generation as compared to the conventional particle swarm optimization and other new meta-heuristic approaches.
文摘In this paper the invasive weed optimization algorithm has been applied to a variety of economic dispatch (ED) problems. The ED problem is concerned with minimizing the fuel cost by optimally loading the electrical generators which are committed to supply a given demand. Some involve prohibited operating zones, transmission losses and valve point loading. In general, they are non-linear non-convex optimization problems which cannot be directly solved by conventional methods. In this work the invasive weed algorithm, a meta-heuristic method inspired by the proliferation of weeds, has been applied to four numerical examples and has resulted in promising solutions compared to published results.