期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Theoretical Analysis and Experimental Verification on Valve-less Piezoelectric Pump with Hemisphere-segment Bluff-body 被引量:9
1
作者 JI Jing ZHANG Jianhui +3 位作者 XIA Qixiao WANG Shouyin HUANG Jun ZHAO Chunsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期595-605,共11页
Existing researches on no-moving part valves in valve-less piezoelectric pumps mainly concentrate on pipeline valves and chamber bottom valves, which leads to the complex structure and manufacturing process of pump ch... Existing researches on no-moving part valves in valve-less piezoelectric pumps mainly concentrate on pipeline valves and chamber bottom valves, which leads to the complex structure and manufacturing process of pump channel and chamber bottom. Furthermore, position fixed valves with respect to the inlet and outlet also makes the adjustability and controllability of flow rate worse. In order to overcome these shortcomings, this paper puts forward a novel implantable structure of valve-less piezoelectric pump with hemisphere-segments in the pump chamber. Based on the theory of flow around bluff-body, the flow resistance on the spherical and round surface of hemisphere-segment is different when fluid flows through, and the macroscopic flow resistance differences thus formed are also different. A novel valve-less piezoelectric pump with hemisphere-segment bluff-body (HSBB) is presented and designed. HSBB is the no-moving part valve. By the method of volume and momentum comparison, the stress on the bluff-body in the pump chamber is analyzed. The essential reason of unidirectional fluid pumping is expounded, and the flow rate formula is obtained. To verify the theory, a prototype is produced. By using the prototype, experimental research on the relationship between flow rate, pressure difference, voltage, and frequency has been carried out, which proves the correctness of the above theory. This prototype has six hemisphere-segments in the chamber filled with water, and the effective diameter of the piezoelectric bimorph is 30mm. The experiment result shows that the flow rate can reach 0.50 mL/s at the frequency of 6 Hz and the voltage of 110 V. Besides, the pressure difference can reach 26.2 mm H20 at the frequency of 6 Hz and the voltage of 160 V. This research proposes a valve-less piezoelectric pump with hemisphere-segment bluff-body, and its validity and feasibility is verified through theoretical analysis and experiment. 展开更多
关键词 valve-less piezoelectric pump hemisphere-segment bluff-body flow resistance
下载PDF
The dynamic characteristics of a valve-less micropump
2
作者 蒋丹 李松晶 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期359-367,共9页
The aim of this paper is to investigate the dynamic characteristics of a valve-less micropump. A dynamic mathe- matical model of the micropump based on a hydraulic analogue system and a simulation method using AMESim ... The aim of this paper is to investigate the dynamic characteristics of a valve-less micropump. A dynamic mathe- matical model of the micropump based on a hydraulic analogue system and a simulation method using AMESim software are developed. By using the finite-element analysis method, the static analysis of the diaphragm is carried out to ob- tain the maximum deflection and volumetric displacement. Dynamic characteristics of the valve-less micropump under different excitation voltages and frequencies are simulated and tested. Because of the discrepancy between simulation results and experimental data at frequencies other than the natural frequency, the revised model for the diaphragm maximum volumetric displacement is presented. Comparison between the simulation results based on the revised model and experimental data shows that the dynamic mathematical model based on the hydraulic analogue system is capable of predicting dynamic characteristics of the valve-less micropump at any excitation voltage and frequency. 展开更多
关键词 valve-less micropump dynamic characteristics hydraulic analogue model DIFFUSER
下载PDF
Principle and Experimental Verification of Caudal-fin-type Piezoelectric-stack Pump with Variable-cross-section Oscillating Vibrator 被引量:12
3
作者 HU Xiaoqi ZHANG Jianhui +3 位作者 HUANG Yi XIA Qixiao HUANG Weiqing ZHAO Chunsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期128-136,共9页
In the traditional flow-resistance-differential (FRD) type valve-less piezoelectric pump, the generated outflow and pressure are discontinuous because of the inherent periodicity and fluctuation of the pump. To overco... In the traditional flow-resistance-differential (FRD) type valve-less piezoelectric pump, the generated outflow and pressure are discontinuous because of the inherent periodicity and fluctuation of the pump. To overcome these drawbacks, utilizing the bending vibration of piezoelectric bimorph to drive fluid was conducted. However, our investigation on the current status of this piezoelectric bimorph pump shows that larger driving force and vibration amplitude are required for fluid pumping; the pumping can be realized through the centrifugal force; and the mechanism of fluid pumping is no longer further studied. Based on these cases, the paper designed a piezoelectric-stack pump with variable-cross-section oscillating (VCSO) vibrator by imitating the swing of the caudal-fin of tuna, and the pump is neither the rotating type nor the volumetric type according to the taxonomy. The interaction between the oscillating vibrator and the fluid parcel is firstly analyzed from the viewpoint of momentum conservation, and the analytical expression of pump flow rate is obtained. Then the modal and harmonic response analyses on the vibrator immerged in water are carried out. From the analyses the first two orders resonance frequencies are 832 Hz and 1 939 Hz, respectively, and the peak value of the tip amplitude is 0.6 mm. Laser Doppler vibrometer is used to measure both the frequency and vibration amplitude, and the determined first two orders resonance frequencies are 617 Hz and 1 356 Hz, respectively. The measured tip amplitude reaches to the peak value of 0.3 mm. At last, experimental measurement for the flow rates with different driving frequencies is conducted. The results show that the flow rate can reach 560 mL/min at 1 370 Hz when the pump runs under the backpressure of 30 mm water column. And the flow rate is as much as 560% of that of experiment results carried out by researchers from Brazil. The proposed pump innovates in both theory and taxonomy; in addition, the pump overcomes the drawbacks such as large flow fluctuation and low flow rate in the traditional FRD type pumps, which will help to broaden the application of the valve-less piezoelectric pump. 展开更多
关键词 caudal-fin-type variable-cross-section piezoelectric-stack valve-less pump
下载PDF
FLOW DIRECTION OF PIEZOELECTRIC PUMP WITH NOZZLE/DIFFUSER-ELEMENTS 被引量:13
4
作者 ZhangJianhui XiaQixiao +1 位作者 HongZhen OnukiAkiyoshi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期107-109,共3页
The piezoelectric pump with nozzle/diffuser-elements, which oscillating formdiffering from regular volumetric reciprocating or rotating pumps because there arenozzle/diffuser-elements substituted for regular valves, i... The piezoelectric pump with nozzle/diffuser-elements, which oscillating formdiffering from regular volumetric reciprocating or rotating pumps because there arenozzle/diffuser-elements substituted for regular valves, is a new type pump whose actuator is apiezoelectric ceramal part with verse piezoelectric effect In recent year, piezoelectric pump ispaid increasing attention to because it is an ideal candidate in application in such area as medicalhealth, mechanical tools and micro-mechanism. The fundamental research on it, however, is still notmade through. Focuses on the phenomenon of different directions of flow among Germany pump, Chinesepump and Swiss pump, which are all fitted with nozzle/diffuser-elements, and analyzes the coneangle of nozzle/diffuser-elements based on the flow equation of valve-less piezoelectric pump withnozzle/diffuser-elements. As a result, the concepts of diffuser toss coefficient and losscoefficient are introduced to explain these phenomena, from which a discussion is given on theoptimization of the cone angle of nozzle/diffuser-element aiming at the maximum of pump flow. 展开更多
关键词 Piezoelectric pump Flow direction valve-less
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部