Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low gra...Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.展开更多
Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)s...Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.展开更多
Calcium-ion batteries have been considered attractive candidates for large-scale energy storage applications due to their natural abundance and low redox potential of Ca^(2+)/Ca.However,current calcium ion technology ...Calcium-ion batteries have been considered attractive candidates for large-scale energy storage applications due to their natural abundance and low redox potential of Ca^(2+)/Ca.However,current calcium ion technology is still hampered by the lack of high-capacity and long-life electrode materials to accommodate the large Ca^(2+)(1.00Å).Herein,an amorphous vanadium structure induced by Mo doping and in-situ electrochemical activation is reported as a high-rate anode material for calcium ion batteries.The doping of Mo could destroy the lattice stability of VS4 material,enhancing the flexibility of the structure.The following electrochemical activation further converted the material into sulfide and oxides co-dominated composite(defined as MoVSO),which serves as an active material for the storage of Ca^(2+)during cycling.Consequently,this amorphous vanadium structure exhibits excellent rate capability,achieving discharge capacities of 306.7 and 149.2 mAh g^(-1)at 5 and 50 A g^(-1)and an ultra-long cycle life of 2000 cycles with 91.2%capacity retention.These values represent the highest level to date reported for calcium ion batteries.The mechanism studies show that the material undergoes a partial phase transition process to derive MoVSO.This work unveiled the calcium storage mechanism of vanadium sulfide in aqueous electrolytes and accelerated the development of high-performance aqueous calcium ion batteries.展开更多
A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring sp...A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.展开更多
The oxidation process of low-grade vanadium slag in the presence of Na2CO3 was investigated by XRD,SEM/EDS and TG-DSC techniques.The results show that the vanadium slag is oxidized in a temperature range from 273 to 7...The oxidation process of low-grade vanadium slag in the presence of Na2CO3 was investigated by XRD,SEM/EDS and TG-DSC techniques.The results show that the vanadium slag is oxidized in a temperature range from 273 to 700 °C.Olivine phases and spinel phases are completely decomposed at 500 and 600 °C,respectively.Most of water-soluble sodium vanadates are formed between 500 and 600 °C.When roasting temperature reaches above 700 °C,the vanadium-rich phases of sodium vanadates can be obviously observed.However,at temperature above 800 °C,the samples are sintered.Most of the vanadium is enwrapped by glassy phase compounds which lead to the decrease of the leaching rate of vanadium.At the same time,the effect of roasting temperature on extraction of vanadium and characterization of leach residues were discussed.展开更多
A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed t...A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed that the contents of soil V ranged from 168 to 1538 mg/kg, which exceeded the maximum permissible value of Canadian soil quality for V. The mean soil V content from wasteland area reached 1421 mg/kg, and those from the areas related with slag heap, ore pile and smelting center were 380, 260 and 225 mg/kg, respectively. Based on the results of the modified BCR sequential extraction procedure, V contents in the mobile fractions varied from 19.2 to 637 mg/kg accounting for 7.4%-42.3% of total V, and those of V(+5) species were between 21.9 and 534.0 mg/kg. Soil enzyme activity and microbial basal respiration were adversely affected by high level of soil V. More attention should be paid to soil V pollution and potential hazardous surrounding the stone coal smelting district.展开更多
Pre-concentration of vanadium from low-grade stone coal by the method of desliming-flotation was investigated. The mineral composition and microstructure of stone coal were studied systematically by means of X-ray flu...Pre-concentration of vanadium from low-grade stone coal by the method of desliming-flotation was investigated. The mineral composition and microstructure of stone coal were studied systematically by means of X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that selective separation of vanadium-bearing minerals can be achieved by flotation in acidic solution using melamine (EA). The final vanadium concentrate with V2O5 grade of 1.88% and recovery rate of 76.58% is obtained by desliming-flotation process and 72.51% of the raw ore is rejected as tailings. The pre-concentration of vanadium from low-grade stone coal can increase V2O5 grade and decrease the content of acid consuming minerals, which would enable economical utilization of metallurgical vanadium extraction technology.展开更多
The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The ef...The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The effects of molar ratio of C to Fe n(C)/n(Fe) and temperature on the behaviors of vanadium and chromium during direct reduction and magnetic separation were investigated. The reduced samples were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM) and energy dispersive spectrometry(EDS) techniques. Experimental results indicate that the recoveries of vanadium and chromium rapidly increase from 10.0% and 9.6% to 45.3% and 74.3%, respectively, as the n(C)/n(Fe) increases from 0.8 to 1.4. At n(C)/n(Fe) of 0.8, the recoveries of vanadium and chromium are always lower than 10.0% in the whole temperature range of 1100-1250 °C. However, at n(C)/n(Fe) of 1.2, the recoveries of vanadium and chromium considerably increase from 17.8% and 33.8% to 42.4% and 76.0%, respectively, as the temperature increases from 1100 °C to 1250 °C. At n(C)/n(Fe) lower than 0.8, most of the FeO·V2O3 and FeO·Cr2O3 are not reduced to carbides because of the lack of carbonaceous reductants, and the temperature has little effect on the reduction behaviors of FeO·V2O3 and FeO·Cr2O3, resulting in very low recoveries of vanadium and chromium during magnetic separation. However, at higher n(C)/n(Fe), the reduction rates of FeO·V2O3 and FeO·Cr2O3 increase significatly because of the excess amount of carbonaceous reductants. Moreover, higher temperatures largely induce the reduction of FeO·V2O3 and FeO·Cr2O3 to carbides. The newly formed carbides are then dissolved in the γ(FCC) phase, and recovered accompanied with the metallic iron during magnetic separation.展开更多
To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures rangi...To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.展开更多
Flotation technology of high-carbon stone coal bearing vanadium was investigated based on mineralogical study. Carbon and vanadium flotation circuits were included in the flotation process for carbon and vanadium mine...Flotation technology of high-carbon stone coal bearing vanadium was investigated based on mineralogical study. Carbon and vanadium flotation circuits were included in the flotation process for carbon and vanadium mineral concentrates. Carbon and vanadium minerals were efficiently separated via regrinding process in the carbon flotation circuit. The results show that the grade and recovery of V2O5 in flotation concentrate are 1.32% and 88.38%, respectively, and the tailings yield is 38.36%. Meanwhile, the grade and recovery of the carbon mineral are 30.08% and 75.10%, respectively, which may be utilized as the fossil fuels directly. The leaching rates of the flotation products are as high as 85%. The results demonstrate that there is no direct adverse effect of flotation process on vanadium leaching. This technology could potentially reduce cost and increase the treatment capacity of vanadium extraction and provide reference to stone coal flotation technology.展开更多
A technique including direct acid leaching, vanadium precipitation with alkaline, sodium hydroxide releaching, impurity removing by adjusting pH value, precipitation vanadium with ammonium chloride, and vanadium pento...A technique including direct acid leaching, vanadium precipitation with alkaline, sodium hydroxide releaching, impurity removing by adjusting pH value, precipitation vanadium with ammonium chloride, and vanadium pentoxide by roasting steps was proposed according to the characteristic of Xichuan clay vanadium mineral. The factors influencing leaching vanadium such as temperature and the concentration of sulfuric acid were investigated and optimized. The experimental results indicate that the extract ratios of V205 can reach 94% and 92% at a sodium chlorate ratio of 3% and a manganese dioxide ratio of 3%, respectivdy. A completely chemical precipitation method was adopted to decontaminate and enrich the vanadium in the acid leaching solution. The X-ray diffraction (XRD) pattern and the purity analysis of vanadium pentoxide indicate that the purity of final vanadium pentoxide can reach 99% and meet the standard specifications. The total recovery can reach about 75%. The technique has the characteristics of simplicity, less investment, and more environment safety as compared with the traditional salt roasting method.展开更多
The extraction technology of vanadium from stone coal by means of no-salt-roasting and dilute acid solution leaching treatment has the advantages of low pollution, low investment, as well as high vanadium leaching eff...The extraction technology of vanadium from stone coal by means of no-salt-roasting and dilute acid solution leaching treatment has the advantages of low pollution, low investment, as well as high vanadium leaching efficiency, which makes it the best technology for extending application. In the present study, the effects of vanadium occurrence state in stone coal, roasting temperature and additive agent on the leaching efficiency of vanadium were studied. The results indicate that the effect of vanadium occurrence state on the extracting vanadium technology is obvious. If the vanadium component in stone coal existed in amorphous phase form, this type of stone coal can be treated by no-slat-roasting and dilute acid solution leaching technology; while the vanadium-bearing crystalline phase existed in stone coal, the roasting additive must be added to destroy this crystalline form so as to acquire high vanadium leaching rate.展开更多
A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by second...A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by secondary ion mass spectroscopy (SIMS) measurements, semi-insulating properties in SiC are achieved by compensating the nitrogen donor with the vanadium deep acceptor level. The presence of different vanadium charge states V^3+ and V^4+ is detected by electron paramagnetic resonance and optical absorption measurements,which coincides with the results obtained by SIMS measurements. Both optical absorption and low temperature photoluminescence measurements reveal that the vanadium acceptor level is located at 0.62eV below the conduction band in 6H-SiC.展开更多
The effects of roasting, mass ratio of H2SO4 to stone coal, leaching temperature, liquid-to-solid ratio, grinding fineness of stone coal, and two-stage counter-current leaching on the vanadium leaching ratio were stud...The effects of roasting, mass ratio of H2SO4 to stone coal, leaching temperature, liquid-to-solid ratio, grinding fineness of stone coal, and two-stage counter-current leaching on the vanadium leaching ratio were studied. The results show that the vanadium leaching ratio of roasted stone coal through two-stage counter-current leaching can reach 65.1% at the mass ratio of H2SO4 to stone coal of 20%, leaching temperature of 95℃, leaching time of 30 h, liquid-to-solid ratio of 1.1 mL·g^-1, and grinding fineness of 0.1 mm, which can serve as an experimental basis for the production of vanadium from stone coal.展开更多
The mechanisms of aid-leaching reagent calcium fluoride in the extracting vanadium processes were researched by comparing the blank extraction with the extraction with calcium fluoride as aid-leaching reagent. The lea...The mechanisms of aid-leaching reagent calcium fluoride in the extracting vanadium processes were researched by comparing the blank extraction with the extraction with calcium fluoride as aid-leaching reagent. The leaching experiments were carried out under the conditions of 95 ~C, 6 h, 1.5 ml.g-1, 15 vol % H2SO4, and 5 % calcium fluoride (mass ratio of CaF2 to stone coal). The concentrations of hydrogen ion were adjusted from initial 1.82 and 4.79 mol.L-1 to the pH of 1.80 4- 0.05 by 200 g.L-1 lime milk, respectively. The solvent extraction experiments were carded out under the organic phase using 15 vol% D2EHPA, 5 vol% TBP, and 80 vol% sulfonated kerosene and O/A phase ratio of 1/4. The leaching rate of vanadium and six-stage countercurrent solvent extraction rate of vanadium can be remarkably improved from 66.71 to 92.97 % and 81.15 to 98.81%, respectively, when calcium fluoride was added as aid-leaching reagent. In the leaching process, fluorine can enhance the breakage of the structure of vanadium-bearing minerals. Meanwhile, fluoride ion can combine with iron ion to generate acid-insoluble iron fluoride hydrate (Fe2Fs.7H20) and consume all ferric ions and a portion of ferrous ions. In adjusting pH value process, the massive impurities are decreased to form KA1SO4 and FeA1Fs. In solvent extraction process, fluorine can prevent the formation of ferric hydroxide colloids and eliminate the formed unstable ferric hydroxide colloids and the silicon-containing colloids to promote the sufficient contact between the aqueous phase and the organic phase and the sufficient reaction.展开更多
The influence of roasting on the leaching rate and valence of vanadium was evaluated during vanadium extraction from stone coal. Vanadium in stone coal is hard to be leached and the leaching rate is less than 10% when...The influence of roasting on the leaching rate and valence of vanadium was evaluated during vanadium extraction from stone coal. Vanadium in stone coal is hard to be leached and the leaching rate is less than 10% when the raw ore is leached by 4 moUL H2SO4 at 90℃ for 2 h. After the sample is roasted at 900℃ for 2 h, the leaching rate of vanadium reaches the maximum, and more than 70% of vanadium can be leached. The crystal of vanadium-bearing mica minerals decomposes and the Content of V(V) increases with the rise of roasting temperature from 600 to 900℃, therefore the leaching rate of vanadium increases significantly with the decomposition of the mica minerals. Some new phases, anorthite for example, form when the roasting temperature reaches 1000℃. A part of vanadium may be enwrapped in the sintered materials and newly formed phases, which may impede the oxidation of low valent vanadium and make the leaching rate of vanadium drop dramatically. The leaching rate of vanadium is not only determined by the valence state of vanadium but also controlled by the decomposition of vanadium-bearing minerals and the existence state of vanadium to a large extent.展开更多
A novel process of composite roasting with CaO/MgO and subsequent acid leaching was proposed to improve the recovery rate of vanadium from Linz–Donawiz(LD)converter vanadium slag.The effects of the MgO/(CaO+MgO)molar...A novel process of composite roasting with CaO/MgO and subsequent acid leaching was proposed to improve the recovery rate of vanadium from Linz–Donawiz(LD)converter vanadium slag.The effects of the MgO/(CaO+MgO)molar ratio and the roasting and leaching parameters on the recovery of vanadium were studied.The results showed that the leaching efficiency of vanadium decreased from 88%to 81%when CaO was replaced completely by MgO;however,it could be improved by roasting with the composite of CaO/MgO.The maximum vanadium leaching efficiency of 94%was achieved under the optimum MgO/(CaO+MgO)mole ratio of 0.5:1.The results from X-ray diffractometry(XRD)and scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM−EDS)confirm that the formation rate of acid-soluble vanadates can be enhanced during roasting with the composite of CaO/MgO and that the leaching kinetics can be accelerated owing to the suppression of calcium sulfate precipitation.展开更多
Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various det...Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various determination methods. The effects of leaching time,leaching temperature,leaching agent concentration,leaching L/S ratio,granularity of material,additive consumption were investigated based on the mineralogy.The results show that under the conditions of leaching time of 3-4 h, temperature of 150℃,sulfuric acid consumption of 25%?30%,ratio of liquid to solid of 1.2:1,the granularity less than 0.074 mm, additive consumption of 3%-5%,and oxygen pressure of 1.2 MPa,and the vanadium leaching rate can be more than 92%by the method of two-step pressurized acid leaching.The powdery V2O5 product with 99.52%in V2O5 content is obtained by the flowsheet of acid recovery,removing iron by reduction process,solvent extraction,precipitating vanadium with ammonium water,and pyrolysis from the stone-coal oxygen pressure acid-leaching solution.The total recovery efficiency of vanadium is above 85%,which is more than 20%higher than that obtained in the conventional process.Furthermore,the new process does not cause air pollution since no HCl or Cl2 is released by calcination of the raw material.展开更多
The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted...The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted leaching methods. The influence of microwave power, leaching time, leaching temperature, and NaOH concentration on the leaching efficiency of spent petrochemical catalyst was investigated. Under microwave-assisted conditions(600 W, 10 min, 90°C, 2.0 mol·L^(-1) NaOH, and 0.20 g·mL^(-1) solid–liquid ratio), the leaching efficiencies of V and Mo reached 94.35% and 96.23%, respectively. It has been confirmed that microwave energy has considerable potential to enhance the efficiency of the leaching process and reduce the leaching time. It is suggested that the enhancement of the leaching efficiencies of V and Mo can be attributed to the existence of a thermal gradient between solid and liquid and the generation of cracks on the mineral surface.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.51874018)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2022-07).
文摘Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072322,22209137,51604250)the Department of Science and Technology of Sichuan Province(CN)(GrantNos.2022YFG0294,23GJHZ0147,23ZDYF0262)Production-Education Integration Demonstration Project of Sichuan Province"Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province"(Sichuan Financial Education[2022]No.106.n)。
文摘Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.
基金supported by the Open Research Found of Songshan Lake Materials Laboratory(2021SLABFN04)Guangdong Basic and Applied Basic Research Foundation(2022A1515010920)+2 种基金Inner Mongolia Major Science and Technology Project(2020ZD0024)the Alashan League’s Project of Applied Technology Research and Development Fund(AMYY2020-01)the Local Science and Technology Development Project of the Central Government(2022ZY0011)
文摘Calcium-ion batteries have been considered attractive candidates for large-scale energy storage applications due to their natural abundance and low redox potential of Ca^(2+)/Ca.However,current calcium ion technology is still hampered by the lack of high-capacity and long-life electrode materials to accommodate the large Ca^(2+)(1.00Å).Herein,an amorphous vanadium structure induced by Mo doping and in-situ electrochemical activation is reported as a high-rate anode material for calcium ion batteries.The doping of Mo could destroy the lattice stability of VS4 material,enhancing the flexibility of the structure.The following electrochemical activation further converted the material into sulfide and oxides co-dominated composite(defined as MoVSO),which serves as an active material for the storage of Ca^(2+)during cycling.Consequently,this amorphous vanadium structure exhibits excellent rate capability,achieving discharge capacities of 306.7 and 149.2 mAh g^(-1)at 5 and 50 A g^(-1)and an ultra-long cycle life of 2000 cycles with 91.2%capacity retention.These values represent the highest level to date reported for calcium ion batteries.The mechanism studies show that the material undergoes a partial phase transition process to derive MoVSO.This work unveiled the calcium storage mechanism of vanadium sulfide in aqueous electrolytes and accelerated the development of high-performance aqueous calcium ion batteries.
基金Project(2013CB632605)supported by the National Basic Research Development Program of ChinaProjects(51274178,51274179)supported by the National Natural Science Foundation of China
文摘A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.
基金Project (2008AA031104) supported by the National High-tech Research and Development Program of China Project (2010063003) supported by the Sharing Fund of Large-scale Equipment of Chongqing University,China
文摘The oxidation process of low-grade vanadium slag in the presence of Na2CO3 was investigated by XRD,SEM/EDS and TG-DSC techniques.The results show that the vanadium slag is oxidized in a temperature range from 273 to 700 °C.Olivine phases and spinel phases are completely decomposed at 500 and 600 °C,respectively.Most of water-soluble sodium vanadates are formed between 500 and 600 °C.When roasting temperature reaches above 700 °C,the vanadium-rich phases of sodium vanadates can be obviously observed.However,at temperature above 800 °C,the samples are sintered.Most of the vanadium is enwrapped by glassy phase compounds which lead to the decrease of the leaching rate of vanadium.At the same time,the effect of roasting temperature on extraction of vanadium and characterization of leach residues were discussed.
基金Project(41201492)supported by the National Natural Science Foundation of China
文摘A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed that the contents of soil V ranged from 168 to 1538 mg/kg, which exceeded the maximum permissible value of Canadian soil quality for V. The mean soil V content from wasteland area reached 1421 mg/kg, and those from the areas related with slag heap, ore pile and smelting center were 380, 260 and 225 mg/kg, respectively. Based on the results of the modified BCR sequential extraction procedure, V contents in the mobile fractions varied from 19.2 to 637 mg/kg accounting for 7.4%-42.3% of total V, and those of V(+5) species were between 21.9 and 534.0 mg/kg. Soil enzyme activity and microbial basal respiration were adversely affected by high level of soil V. More attention should be paid to soil V pollution and potential hazardous surrounding the stone coal smelting district.
基金Project (2012BAB07B05) supported by the National Technology Support Project of ChinaProject (2013zzts066) supported by Independent Innovation Foundation of Central South University,China
文摘Pre-concentration of vanadium from low-grade stone coal by the method of desliming-flotation was investigated. The mineral composition and microstructure of stone coal were studied systematically by means of X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that selective separation of vanadium-bearing minerals can be achieved by flotation in acidic solution using melamine (EA). The final vanadium concentrate with V2O5 grade of 1.88% and recovery rate of 76.58% is obtained by desliming-flotation process and 72.51% of the raw ore is rejected as tailings. The pre-concentration of vanadium from low-grade stone coal can increase V2O5 grade and decrease the content of acid consuming minerals, which would enable economical utilization of metallurgical vanadium extraction technology.
基金Projects(2013CB632601,2013CB632604)supported by the National Basic Research Program of ChinaProject(51125018)supported by the National Science Foundation for Distinguished Young Scholars of China+1 种基金Project(KGZD-EW-201-2)supported by the Key Research Program of the Chinese Academy of SciencesProjects(51374191,21106167,51104139)supported by the National Natural Science Foundation of China
文摘The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The effects of molar ratio of C to Fe n(C)/n(Fe) and temperature on the behaviors of vanadium and chromium during direct reduction and magnetic separation were investigated. The reduced samples were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM) and energy dispersive spectrometry(EDS) techniques. Experimental results indicate that the recoveries of vanadium and chromium rapidly increase from 10.0% and 9.6% to 45.3% and 74.3%, respectively, as the n(C)/n(Fe) increases from 0.8 to 1.4. At n(C)/n(Fe) of 0.8, the recoveries of vanadium and chromium are always lower than 10.0% in the whole temperature range of 1100-1250 °C. However, at n(C)/n(Fe) of 1.2, the recoveries of vanadium and chromium considerably increase from 17.8% and 33.8% to 42.4% and 76.0%, respectively, as the temperature increases from 1100 °C to 1250 °C. At n(C)/n(Fe) lower than 0.8, most of the FeO·V2O3 and FeO·Cr2O3 are not reduced to carbides because of the lack of carbonaceous reductants, and the temperature has little effect on the reduction behaviors of FeO·V2O3 and FeO·Cr2O3, resulting in very low recoveries of vanadium and chromium during magnetic separation. However, at higher n(C)/n(Fe), the reduction rates of FeO·V2O3 and FeO·Cr2O3 increase significatly because of the excess amount of carbonaceous reductants. Moreover, higher temperatures largely induce the reduction of FeO·V2O3 and FeO·Cr2O3 to carbides. The newly formed carbides are then dissolved in the γ(FCC) phase, and recovered accompanied with the metallic iron during magnetic separation.
基金Project(2007CB613504)supported by the National Key Basic Research Program of ChinaProjects(51004033,50974035,51074047)supported by the National Natural Science Foundation of ChinaProject(2008BAB34B01)supported by National Science and Technology Support Plan of China during the 11th Five-Year Plan
文摘To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.
基金Project(2012BAB07B05)supported by the National Science&Technology Support Program during"Twelfth Five-Year"Plan Period
文摘Flotation technology of high-carbon stone coal bearing vanadium was investigated based on mineralogical study. Carbon and vanadium flotation circuits were included in the flotation process for carbon and vanadium mineral concentrates. Carbon and vanadium minerals were efficiently separated via regrinding process in the carbon flotation circuit. The results show that the grade and recovery of V2O5 in flotation concentrate are 1.32% and 88.38%, respectively, and the tailings yield is 38.36%. Meanwhile, the grade and recovery of the carbon mineral are 30.08% and 75.10%, respectively, which may be utilized as the fossil fuels directly. The leaching rates of the flotation products are as high as 85%. The results demonstrate that there is no direct adverse effect of flotation process on vanadium leaching. This technology could potentially reduce cost and increase the treatment capacity of vanadium extraction and provide reference to stone coal flotation technology.
基金This research was financially supported by the National Natural Science Foundation of China (No.20576137)the Major State Basic Research Development Program of China (No.2003CB716001).
文摘A technique including direct acid leaching, vanadium precipitation with alkaline, sodium hydroxide releaching, impurity removing by adjusting pH value, precipitation vanadium with ammonium chloride, and vanadium pentoxide by roasting steps was proposed according to the characteristic of Xichuan clay vanadium mineral. The factors influencing leaching vanadium such as temperature and the concentration of sulfuric acid were investigated and optimized. The experimental results indicate that the extract ratios of V205 can reach 94% and 92% at a sodium chlorate ratio of 3% and a manganese dioxide ratio of 3%, respectivdy. A completely chemical precipitation method was adopted to decontaminate and enrich the vanadium in the acid leaching solution. The X-ray diffraction (XRD) pattern and the purity analysis of vanadium pentoxide indicate that the purity of final vanadium pentoxide can reach 99% and meet the standard specifications. The total recovery can reach about 75%. The technique has the characteristics of simplicity, less investment, and more environment safety as compared with the traditional salt roasting method.
基金This work was financially supported by the Science Foundation of Central South University (No.76112037)the Postdoctoral Science Foundation of Central South University.
文摘The extraction technology of vanadium from stone coal by means of no-salt-roasting and dilute acid solution leaching treatment has the advantages of low pollution, low investment, as well as high vanadium leaching efficiency, which makes it the best technology for extending application. In the present study, the effects of vanadium occurrence state in stone coal, roasting temperature and additive agent on the leaching efficiency of vanadium were studied. The results indicate that the effect of vanadium occurrence state on the extracting vanadium technology is obvious. If the vanadium component in stone coal existed in amorphous phase form, this type of stone coal can be treated by no-slat-roasting and dilute acid solution leaching technology; while the vanadium-bearing crystalline phase existed in stone coal, the roasting additive must be added to destroy this crystalline form so as to acquire high vanadium leaching rate.
文摘A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by secondary ion mass spectroscopy (SIMS) measurements, semi-insulating properties in SiC are achieved by compensating the nitrogen donor with the vanadium deep acceptor level. The presence of different vanadium charge states V^3+ and V^4+ is detected by electron paramagnetic resonance and optical absorption measurements,which coincides with the results obtained by SIMS measurements. Both optical absorption and low temperature photoluminescence measurements reveal that the vanadium acceptor level is located at 0.62eV below the conduction band in 6H-SiC.
基金supported by the Science Foundation of Central South University (No. 76112037)the Postdoctoral Science Foundation of Central South University.
文摘The effects of roasting, mass ratio of H2SO4 to stone coal, leaching temperature, liquid-to-solid ratio, grinding fineness of stone coal, and two-stage counter-current leaching on the vanadium leaching ratio were studied. The results show that the vanadium leaching ratio of roasted stone coal through two-stage counter-current leaching can reach 65.1% at the mass ratio of H2SO4 to stone coal of 20%, leaching temperature of 95℃, leaching time of 30 h, liquid-to-solid ratio of 1.1 mL·g^-1, and grinding fineness of 0.1 mm, which can serve as an experimental basis for the production of vanadium from stone coal.
基金financially supported by the Key Science and Technology Support Program (No. 2011BAB05B01) from the Ministry of ScienceTechnology of China and the Special Science and Technology Program (No. 201009013) from the Ministry of Environmental Protection of China
文摘The mechanisms of aid-leaching reagent calcium fluoride in the extracting vanadium processes were researched by comparing the blank extraction with the extraction with calcium fluoride as aid-leaching reagent. The leaching experiments were carried out under the conditions of 95 ~C, 6 h, 1.5 ml.g-1, 15 vol % H2SO4, and 5 % calcium fluoride (mass ratio of CaF2 to stone coal). The concentrations of hydrogen ion were adjusted from initial 1.82 and 4.79 mol.L-1 to the pH of 1.80 4- 0.05 by 200 g.L-1 lime milk, respectively. The solvent extraction experiments were carded out under the organic phase using 15 vol% D2EHPA, 5 vol% TBP, and 80 vol% sulfonated kerosene and O/A phase ratio of 1/4. The leaching rate of vanadium and six-stage countercurrent solvent extraction rate of vanadium can be remarkably improved from 66.71 to 92.97 % and 81.15 to 98.81%, respectively, when calcium fluoride was added as aid-leaching reagent. In the leaching process, fluorine can enhance the breakage of the structure of vanadium-bearing minerals. Meanwhile, fluoride ion can combine with iron ion to generate acid-insoluble iron fluoride hydrate (Fe2Fs.7H20) and consume all ferric ions and a portion of ferrous ions. In adjusting pH value process, the massive impurities are decreased to form KA1SO4 and FeA1Fs. In solvent extraction process, fluorine can prevent the formation of ferric hydroxide colloids and eliminate the formed unstable ferric hydroxide colloids and the silicon-containing colloids to promote the sufficient contact between the aqueous phase and the organic phase and the sufficient reaction.
基金financially supported by the National Key Technologies R&D Program of China(Nos.2011BAB05B01 and 2011BAB05B04)the Exclusive Research Fund of Environmental Protection for the Commonweal of China(No.201009013)
文摘The influence of roasting on the leaching rate and valence of vanadium was evaluated during vanadium extraction from stone coal. Vanadium in stone coal is hard to be leached and the leaching rate is less than 10% when the raw ore is leached by 4 moUL H2SO4 at 90℃ for 2 h. After the sample is roasted at 900℃ for 2 h, the leaching rate of vanadium reaches the maximum, and more than 70% of vanadium can be leached. The crystal of vanadium-bearing mica minerals decomposes and the Content of V(V) increases with the rise of roasting temperature from 600 to 900℃, therefore the leaching rate of vanadium increases significantly with the decomposition of the mica minerals. Some new phases, anorthite for example, form when the roasting temperature reaches 1000℃. A part of vanadium may be enwrapped in the sintered materials and newly formed phases, which may impede the oxidation of low valent vanadium and make the leaching rate of vanadium drop dramatically. The leaching rate of vanadium is not only determined by the valence state of vanadium but also controlled by the decomposition of vanadium-bearing minerals and the existence state of vanadium to a large extent.
基金Project(2018M640898)supported by the China Postdoctoral Science FoundationProject(cstc2019jcyj-bshX0068)supported by the Natural Science Foundation of Chongqing,China+1 种基金Project(52004044)supported by the National Natural Science Foundation of ChinaProject(2018YFC1900500)supported by the National Key Research and Development Program of China。
文摘A novel process of composite roasting with CaO/MgO and subsequent acid leaching was proposed to improve the recovery rate of vanadium from Linz–Donawiz(LD)converter vanadium slag.The effects of the MgO/(CaO+MgO)molar ratio and the roasting and leaching parameters on the recovery of vanadium were studied.The results showed that the leaching efficiency of vanadium decreased from 88%to 81%when CaO was replaced completely by MgO;however,it could be improved by roasting with the composite of CaO/MgO.The maximum vanadium leaching efficiency of 94%was achieved under the optimum MgO/(CaO+MgO)mole ratio of 0.5:1.The results from X-ray diffractometry(XRD)and scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM−EDS)confirm that the formation rate of acid-soluble vanadates can be enhanced during roasting with the composite of CaO/MgO and that the leaching kinetics can be accelerated owing to the suppression of calcium sulfate precipitation.
基金Project(2006AA06Z130)supported by the High-tech Research and Development Program of ChinaProject(50874053)supported by the National Natural Science Foundation of ChinaProject(2007GA010)supported by Science and Technology Bureau of Yunnan Province,China
文摘Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various determination methods. The effects of leaching time,leaching temperature,leaching agent concentration,leaching L/S ratio,granularity of material,additive consumption were investigated based on the mineralogy.The results show that under the conditions of leaching time of 3-4 h, temperature of 150℃,sulfuric acid consumption of 25%?30%,ratio of liquid to solid of 1.2:1,the granularity less than 0.074 mm, additive consumption of 3%-5%,and oxygen pressure of 1.2 MPa,and the vanadium leaching rate can be more than 92%by the method of two-step pressurized acid leaching.The powdery V2O5 product with 99.52%in V2O5 content is obtained by the flowsheet of acid recovery,removing iron by reduction process,solvent extraction,precipitating vanadium with ammonium water,and pyrolysis from the stone-coal oxygen pressure acid-leaching solution.The total recovery efficiency of vanadium is above 85%,which is more than 20%higher than that obtained in the conventional process.Furthermore,the new process does not cause air pollution since no HCl or Cl2 is released by calcination of the raw material.
基金financially supported by the National Basic Research Program of China(Nos.2013CB632601 and 2013CB632604)the National Science Foundation for Distinguished Young Scholars of China(Nos.51125018 and 51504230)+2 种基金the Key Research Program of Chinese Academy of Sciences(No.KGZD-EW-201-2)the National Natural Science Foundation of China(Nos.51374191 and 2110616751104139)China Postdoctoral Science Foundation(Nos.2012M510552 and 2013T60175)
基金financially supported by the High-degree Talent Introduction Program of Guangdong Academy of Sciences(No.2017GDASCX-0841)the Science and Technology Program of Guangzhou(No.201607020021)+2 种基金the National Natural Science Foundation of China(No.51304055)the Innovative Platform Construction Program of Guangdong Academy of Sciences(No.2017GDASCX-0109)the Pearl River Nova Program of Guangzhou(No.201806010016)
文摘The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted leaching methods. The influence of microwave power, leaching time, leaching temperature, and NaOH concentration on the leaching efficiency of spent petrochemical catalyst was investigated. Under microwave-assisted conditions(600 W, 10 min, 90°C, 2.0 mol·L^(-1) NaOH, and 0.20 g·mL^(-1) solid–liquid ratio), the leaching efficiencies of V and Mo reached 94.35% and 96.23%, respectively. It has been confirmed that microwave energy has considerable potential to enhance the efficiency of the leaching process and reduce the leaching time. It is suggested that the enhancement of the leaching efficiencies of V and Mo can be attributed to the existence of a thermal gradient between solid and liquid and the generation of cracks on the mineral surface.