YBa2Cu3-xVxO7-y(x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) superconductors have been prepared. X-ray diffraction shows that the system remains orthorhombic for all compositions studied, but for x > 0.4 V2O5 was detected...YBa2Cu3-xVxO7-y(x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) superconductors have been prepared. X-ray diffraction shows that the system remains orthorhombic for all compositions studied, but for x > 0.4 V2O5 was detected as an impurity phase. Substitution of V5+ for Cu2+ occurs in the Cu(2) sites on the Cu(2)-O planes. The introduction of the high valence element, vanadium, produces the extra free-electrons. These electrons recombine with the positive carrier of the system. It makes depression of the mobility and the Hall number of YBa2Cu3-xVxO7-v and also results in a depression of TC.展开更多
A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by second...A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by secondary ion mass spectroscopy (SIMS) measurements, semi-insulating properties in SiC are achieved by compensating the nitrogen donor with the vanadium deep acceptor level. The presence of different vanadium charge states V^3+ and V^4+ is detected by electron paramagnetic resonance and optical absorption measurements,which coincides with the results obtained by SIMS measurements. Both optical absorption and low temperature photoluminescence measurements reveal that the vanadium acceptor level is located at 0.62eV below the conduction band in 6H-SiC.展开更多
Deep level transient Fourier spectroscopy (DLTFS) measurements are used to characterize the deep impurity levels in n-type 4H-SiC by vanadium ions implantation. Two acceptor levels of vanadium at Ec - 0.81 and Ec - ...Deep level transient Fourier spectroscopy (DLTFS) measurements are used to characterize the deep impurity levels in n-type 4H-SiC by vanadium ions implantation. Two acceptor levels of vanadium at Ec - 0.81 and Ec - 1.02eV with the electron capture cross section of 7.0 × 10^16 and 6.0 × 10^-16 cm^2 are observed, respectively. Low-temperature photoluminescence measurements in the range of 1.4-3.4eV are also performed on the sample, which reveals the formation of two electron traps at 0.80 and 1. 16eV below the conduction band. These traps indicate that vanadium doping leads to the formation of two deep acceptor levels in 4H-SiC,with the location of 0.8±0.01 and 1. 1 ±0.08eV below the conduction band.展开更多
The exploration of cost-effective,high-performance,and stable electrocatalysts for the hydrogen evolution reaction(HER)over wide pH range(0–14)is of paramount importance for future renewable energy conversion technol...The exploration of cost-effective,high-performance,and stable electrocatalysts for the hydrogen evolution reaction(HER)over wide pH range(0–14)is of paramount importance for future renewable energy conversion technologies.Regulation of electronic structure through doping vanadium atoms is a feasible construction strategy to enhance catalytic activities,electron transfer capability,and stability of the HER electrode.Herein,V-doped NiCoP nanosheets on carbon fiber paper(CFP)(denoted as Vx-NiCoP/CFP)were constructed by doping V modulation on NiCoP nanosheets on CFP and used for pH-universal HER.Benefiting from the abundant catalytic sites and optimized hydrogen binding thermodynamics,the resultant V15-NiCoP/CFP demonstrates a significantly improved HER catalytic activity,requiring overpotentials of 46.5,52.4,and 85.3 mV to reach a current density of 10 mA·cm^(−2)in 1 mol·L^(−1) KOH,0.5 mol·L^(−1) H_(2)SO_(4),and 1 mol·L^(−1) phosphate buffer solution(PBS)electrolytes,respectively.This proposed cation-doping strategy provides a new inspiration to rationally enhance or design new-type nonprecious metal-based,highly efficient,and pH-universal electrocatalysts for various energy conversion systems.展开更多
基金Project supported by the National Science and Technology Committee of China and the National Natural Science Foundation of China.
文摘YBa2Cu3-xVxO7-y(x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) superconductors have been prepared. X-ray diffraction shows that the system remains orthorhombic for all compositions studied, but for x > 0.4 V2O5 was detected as an impurity phase. Substitution of V5+ for Cu2+ occurs in the Cu(2) sites on the Cu(2)-O planes. The introduction of the high valence element, vanadium, produces the extra free-electrons. These electrons recombine with the positive carrier of the system. It makes depression of the mobility and the Hall number of YBa2Cu3-xVxO7-v and also results in a depression of TC.
文摘A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by secondary ion mass spectroscopy (SIMS) measurements, semi-insulating properties in SiC are achieved by compensating the nitrogen donor with the vanadium deep acceptor level. The presence of different vanadium charge states V^3+ and V^4+ is detected by electron paramagnetic resonance and optical absorption measurements,which coincides with the results obtained by SIMS measurements. Both optical absorption and low temperature photoluminescence measurements reveal that the vanadium acceptor level is located at 0.62eV below the conduction band in 6H-SiC.
文摘Deep level transient Fourier spectroscopy (DLTFS) measurements are used to characterize the deep impurity levels in n-type 4H-SiC by vanadium ions implantation. Two acceptor levels of vanadium at Ec - 0.81 and Ec - 1.02eV with the electron capture cross section of 7.0 × 10^16 and 6.0 × 10^-16 cm^2 are observed, respectively. Low-temperature photoluminescence measurements in the range of 1.4-3.4eV are also performed on the sample, which reveals the formation of two electron traps at 0.80 and 1. 16eV below the conduction band. These traps indicate that vanadium doping leads to the formation of two deep acceptor levels in 4H-SiC,with the location of 0.8±0.01 and 1. 1 ±0.08eV below the conduction band.
基金Key Research and Development Program of Shanxi(Grant No.201803D421085)Shanxi Scholarship Council of China(Grant No.2019070)+1 种基金Shanxi Graduate Education Innovation Project(Grant No.2020BY095)State Key Laboratory of Physical Chemistry of Solid Surfaces,Xiamen University(Grant No.201912)。
文摘The exploration of cost-effective,high-performance,and stable electrocatalysts for the hydrogen evolution reaction(HER)over wide pH range(0–14)is of paramount importance for future renewable energy conversion technologies.Regulation of electronic structure through doping vanadium atoms is a feasible construction strategy to enhance catalytic activities,electron transfer capability,and stability of the HER electrode.Herein,V-doped NiCoP nanosheets on carbon fiber paper(CFP)(denoted as Vx-NiCoP/CFP)were constructed by doping V modulation on NiCoP nanosheets on CFP and used for pH-universal HER.Benefiting from the abundant catalytic sites and optimized hydrogen binding thermodynamics,the resultant V15-NiCoP/CFP demonstrates a significantly improved HER catalytic activity,requiring overpotentials of 46.5,52.4,and 85.3 mV to reach a current density of 10 mA·cm^(−2)in 1 mol·L^(−1) KOH,0.5 mol·L^(−1) H_(2)SO_(4),and 1 mol·L^(−1) phosphate buffer solution(PBS)electrolytes,respectively.This proposed cation-doping strategy provides a new inspiration to rationally enhance or design new-type nonprecious metal-based,highly efficient,and pH-universal electrocatalysts for various energy conversion systems.