期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
CALCULATION OF SPLITTING VANES AND INNER FLOW ANALYSIS FOR CENTRIFUGAL PUMP IMPELLER 被引量:9
1
作者 PanZhongyong YuanShouqi LiHong CaoWeidong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期156-159,共4页
The calculation method for vane numbers is obtained on the intention that itshould have no back flow area in the flow passage of centrifugal passage. Then a criterion that thedesign of splitting vanes of centrifugal c... The calculation method for vane numbers is obtained on the intention that itshould have no back flow area in the flow passage of centrifugal passage. Then a criterion that thedesign of splitting vanes of centrifugal compound impeller should ensure that the back flow arearatio be the minimum is proposed. On the basis of the criterion, the slippery theory is used as oneof CFD methods to analyze the inner flow field of the impeller of various kinds of splitting vanesdesign, therefore, the optimized design of splitting vanes is obtained and which agrees with that ofsome testing results. 展开更多
关键词 Centrifugal pump Splitting vanes Slippery theory CFD
下载PDF
Determining the Scour Dimensions Around Submerged Vanes in a 180°Bend with the Gene Expression Programming Technique 被引量:1
2
作者 Saeid Shabanlou Hamed Azimi +1 位作者 Isa Ebtehaj Hossein Bonakdari 《Journal of Marine Science and Application》 CSCD 2018年第2期233-240,共8页
Submerged vanes are installed on rivers and channel beds to protect the outer bank bends from scouring.Also,local scouring occurs around the submerged vanes over time,and identifying the effective factors on the scour... Submerged vanes are installed on rivers and channel beds to protect the outer bank bends from scouring.Also,local scouring occurs around the submerged vanes over time,and identifying the effective factors on the scouring phenomena around these submerged vanes is one of the important issues in river engineering.The most important aimof this study is investigation of scour pattern around submerged vanes located in 180°bend experimentally and numerically.Firstly,the effects of various parameters such as the Froude number(Fr),angle of submerged vanes to the flow(α),angle of submerged vane location in the bend(θ),distance between submerged vanes(d),height(H),and length(L)of the vanes on the dimensionless volume of the scour hole were experimentally studied.The submerged vanes were installed on a 180°bend whose central radius and channel width were 2.8 and 0.6 m,respectively.By reducing the Froude number,the scour hole volume decreased.For all Froude numbers,the biggest scour hole formed atθ=15°.In all models,by increasing the Froude number,the scour hole volume significantly increases.In addition,by increasing the submerged vanes’length and height,the scour hole dimensions also grow.Secondly,using gene expression programming(GEP),a relationship for determining the scour hole volume around the submerged vanes was provided.For this model,the determination coefficients(R2)for the training and test modes were computed as 0.91 and 0.9,respectively.In addition,this study performed partial derivative sensitivity analysis(PDSA).According to the results,the PDSA was calculated as positive for all input variables. 展开更多
关键词 180°bend SUBMERGED vanes SCOUR HOLE volume Gene expression PROGRAMMING Partial DERIVATIVE sensitivity analysis
下载PDF
Performance Assessment of a Heat Recovery Unit Utilizing Turbine with Variable Inlet Guide Vanes Configuration for Application in Passenger Vehicles 被引量:1
3
作者 Thaddaeus Julius Tanimu Kogi Ibrahim +1 位作者 Emmanuel Okon Asukwo Ezeaku Ikeokwu Innocent 《Journal of Power and Energy Engineering》 2021年第5期120-133,共14页
This study explores the potentials of employing an Organic Rankine Cycle (ORC) system with variable inlet guide vanes (VIV) turbine geometry designed on a GT-Suite platform for effective exhaust heat recovery (EHR) ap... This study explores the potentials of employing an Organic Rankine Cycle (ORC) system with variable inlet guide vanes (VIV) turbine geometry designed on a GT-Suite platform for effective exhaust heat recovery (EHR) application onboard passenger vehicles. The ORC model simulation was based on vehicle speed mode using R245fa as working fluid to assess the thermal performance of the ORC system when utilizing modified turbine geometry. Interestingly, the model achieved a very improved performance in contrast to the model without a modified turbine configuration. The results revealed the average 2.32 kW ORC net output, 4.93% thermal efficiency, 6.1% mechanical efficiency, and 5.0% improved brake specific fuel consumption (BSFC) for the developed model. As determined by the performance indicators, these promising results from the model study show the prospect of EHR technology application in the transportation sector for reduction in exhaust emissions and fuel savings. 展开更多
关键词 Organic Rankine Cycle System Variable Inlet Guide vanes Heat Recovery System Mechanical Efficiency Thermal Efficiency Improved BSFC
下载PDF
Transient simulation of a pump-turbine with misaligned guide vanes during turbine model start-up 被引量:9
4
作者 Ye-Xiang Xiao Ruo-Fu Xiao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第5期646-655,共10页
Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady R... Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady Reynolds-averaged Navier-Stokes equations with the SST turbulence model were used to model the transient flow within the entire flow passage of a reversible pump-turbine with and without misaligned guide vanes during turbine model start-up. The unstable S-curve and its improvement by using misaligned guide vane were verified by model test and simulation. The transient flow calculations were used to clarify the variations of pressure pulse and internal flow behavior in the entire flow passage. The use of misaligned guide vanes can eliminate the S-curve characteristics of a pump-turbine, and can significantly increase the pressure pulse amplitude in the entire flow passage and the runner radial forces during start-up. The MGV only decreased the pulse amplitude on the guide vane suction side when the rotating speed was less than 50% rated speed. The hydraulic reason is that the MGV dramatically changed the flow patterns inside the entire flow passage, and destroyed the symmetry of the flow distribution inside the guide vane and runner. 展开更多
关键词 Transient flow. Pump turbine. Misaligned guide vane Model test Pressure pulse
下载PDF
Investigation on Mechanical Characteristics of Air Jet Acting on Nozzle Vanes of VNT 被引量:2
5
作者 马朝臣 吕伟 +1 位作者 张志强 施新 《Journal of Beijing Institute of Technology》 EI CAS 2010年第2期136-142,共7页
Extensive experimental studies are performed using force sensors to measure actuating forces of nozzle ring devices of variable nozzle turbines. Torques from pneumatic action applied onto axles of nozzle vanes have be... Extensive experimental studies are performed using force sensors to measure actuating forces of nozzle ring devices of variable nozzle turbines. Torques from pneumatic action applied onto axles of nozzle vanes have been calculated. Test results obtained through repeated experiments are quite congruent, confirming the effectiveness of this simple method. Results have indicated that, with a fixed opening angle of guide vane, pneumatic torque increases with mass flow of air jet in the turbine; moreover, under the same mass flow rate, torque decreases with reducing opening angle, even possibly change direction down to negative. The results have also provided a modus operandi for designing nozzle-adjusting devices as well as validation data for numerical study on changes of pneumatic torque onto guide vanes under full engine operating conditions. 展开更多
关键词 variable nozzle turbine nozzle vane pneumatic torque
下载PDF
Influence of long and short guide vanes on hydraulic performance of water-jet pump
6
作者 LI Qiang XIA Shengsheng YAN Hao 《排灌机械工程学报》 EI CSCD 北大核心 2019年第10期855-862,共8页
Different guide vane structures will affect the flow inside the pump,and then affect the transformation of the pressure energy and kinetic energy,and change the velocity distribution of the pump outlet.In order to stu... Different guide vane structures will affect the flow inside the pump,and then affect the transformation of the pressure energy and kinetic energy,and change the velocity distribution of the pump outlet.In order to study the influence of long and short guide vanes on the water-jet pump,on the basis of conventional design,eight schemes of guide vane with different vertical heights were designed in the method of computational fluid dynamics for numerical calculation,the performance curve of water-jet pumps with different long and short guide vanes was obtained,and finally the influence of different guide vanes on hydraulic performance and internal flow was analyzed.The results show that all of schemes reducing the height of blade can improve the head and efficiency.In the schemes reducing the height on the shroud,the guide vanes that the height of the blade is equal to the height difference between hub and shroud in impeller have the highest head and efficiency.In all schemes decreasing the blade height,with the increase of the height difference,the velocity increases gradually and the distribution of turbulence kinetic energy becomes more reasonable in the guide vane outlet.The schemes reducing the height on the hub have more reasonable distribution of velocity and turbulence kinetic energy according to schemes reducing the height on the shroud.The guide vanes of long and short blades can be used to stagger the position of the diffusion flow generated by adjacent blades,which can reduce the effect of the velocity circulation and make the flow of the outlet position more stable. 展开更多
关键词 LONG and SHORT guide VANE water-jet PUMP hydraulic performance TURBULENCE KINETIC energy
下载PDF
ESRC guide vanes of hydraulic turbine for Three Gorges project
7
作者 Rui CHEN Xudong LI +3 位作者 Junqing WANG Shifang SU Jun YANG Xueliang QU 《China Foundry》 SCIE CAS 2005年第2期117-120,共4页
The mechanical properties and internal quality of low carbon martensite Electroslag Remelting Casting (ESRC)stainless steel castings are superior to that of sand casting ones. The key technologies for the equipments a... The mechanical properties and internal quality of low carbon martensite Electroslag Remelting Casting (ESRC)stainless steel castings are superior to that of sand casting ones. The key technologies for the equipments and ESRCprocesses have been resolved during the experimental research period of guide vanes of hydraulic turbines for ThreeGorges project. And ESRC guide vanes of hydraulic turbines for Three Gorges project have been produced successfully. 展开更多
关键词 ESRC GUIDE VANE STAINLESS STEEL
下载PDF
Optimization of closing law of turbine guide vanes based on improved artificial ecosystem algorithm
8
作者 Li-ying Wang Jia-jie Zhang Hong-gang Fan 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第3期582-593,共12页
Optimization of the closing law of the guide vane is the most economical and efficient way to reduce the risk incurred by pressure and speed excursions,thus guaranteeing the security of the hydro-turbine and the whole... Optimization of the closing law of the guide vane is the most economical and efficient way to reduce the risk incurred by pressure and speed excursions,thus guaranteeing the security of the hydro-turbine and the whole hydraulic network.In order to optimize the closing law of the guide vane of hydraulic turbine,an improved artificial ecosystem optimization algorithm was proposed(IAEO).The reverse learning was used to initialize the population,multi-strategy bound handing schemes was used to improve the algorithm convergence speed.Twenty-three mathematical benchmark functions were used to test the IAEO.Results showed an improvement in the IAEO algorithm convergence speed and a stronger exploration than other algorithms.IAEO algorithm was used to optimize the closing law of the guide vane of hydraulic turbine based on the hydraulic transient calculation.The results showed that the maximum pressure in the spiral casing inlet,the minimum pressure in the draft tube inlet and the maximum speed all meet the design requirements by use of the closing law of the guide vane optimized by IAEO.Compared with other algorithms such as particle swarm optimization(PSO),artificial ecosystem-based optimization(AEO)and grey wolf optimizer(GWO),the closing law of the guide vane optimized by IAEO algorithm was proved to be of great advantages in distribution of safety margin of each optimization goal. 展开更多
关键词 Hydraulic transient process the closing law of guide vane improved artificial ecosystem-based optimization(IAEO) optimization calculation
原文传递
Numerical predictions of pressure pulses in a Francis pump turbine with misaligned guide vanes 被引量:13
9
作者 肖业祥 王正伟 +1 位作者 张瑾 罗永要 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第2期250-256,共7页
Previous experimental and numerical analyses of the pressure pulse characteristics in a Francis turbine are extended here by using the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport... Previous experimental and numerical analyses of the pressure pulse characteristics in a Francis turbine are extended here by using the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model to model the unsteady flow within the entire flow passage of a large Francis pump turbine with misaligned guide vanes at the rated rotational speed. The S-curve characteristics are analyzed by a combined use of the model test and the steady state simulation with the aligned guide vane firstly. Four misaligned guide vanes with two different openings are chosen to analyze the influence of pressure pulses in the turbine. The characteristics of the dominant unsteady flow frequencies in different parts of the pump turbine for various misaligned guide vane openings are investigated in detail. The predicted hydraulic performance and the pressure fluctuations show that the misaligned guide vanes reduce the relative pressure fluctuation amplitudes in the stationary part of the flow passage, but not the runner blades. The misaligned guide vanes have changed the low frequencies in the entire flow passage with the change of the pulse amplitudes mainly due to changes in the rotor-stator interaction and the low frequency vortex rope flow behavior. 展开更多
关键词 pump turbine misaligned guide vanes pressure pulsation rotor stator interaction numerical simulation
原文传递
Optimum Profiles of Endwall Contouring for Enhanced Net Heat Flux Reduction and Aerodynamic Performance 被引量:1
10
作者 Arjun K S Tide P S Biju N 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期80-92,共13页
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish... Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization. 展开更多
关键词 endwall contouring turbine VANE heat transfer phantom cooling coolant injection net heat flux reduction aerodynamic performance
下载PDF
Turbine Passage Secondary Flow Dynamics and Endwall Heat Transfer Under Different Inflow Turbulence
11
作者 Arjun K S Tide P S Biju N 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期51-62,共12页
This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Re... This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth. 展开更多
关键词 TURBINE VANE heat transfer ENDWALL TURBULENCE secondary flow
下载PDF
Multi-scale thermodynamic analysis method for 2D SiC/SiC composite turbine guide vanes 被引量:10
12
作者 Xin LIU Xiuli SHEN +1 位作者 Longdong GONG Peng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期117-125,共9页
Ceramic Matrix Composite (CMC) turbine guide vanes possess multi-scale stress and strain with inhomogeneity at the microscopic scale. Given that the macroscopic distribution cannot reflect the microscopic stress flu... Ceramic Matrix Composite (CMC) turbine guide vanes possess multi-scale stress and strain with inhomogeneity at the microscopic scale. Given that the macroscopic distribution cannot reflect the microscopic stress fluctuation, the macroscopic method fails to meet the requirements of stress and strain analysis of CMC turbine guide vanes. Furthermore, the complete thermodynamic properties of 2D woven SiC/SiC-CMC cannot be obtained through experimentation, Accordingly, a method to calculate the thermodynamic properties of CMC and analyze multi-scale stress and strain of the turbine guide vanes should be established. In this study, the multi-scale thermodynamic analysis is investigated. The thermodynamic properties of Chemical Vapor Infiltration (CVI) pro- cessed SiC/SiC-CMC are predicted by a Representative Volume Element (RVE) model with porosity, leading to the result that the relative error between the calculated in-plane tensile modulus and the experimental value is 4.2%. The macroscopic response of a guide vane under given conditions is predicted. The relative error between the predicted strain on the trailing edge and the experimental value is 9.7%. The calculation of the stress distribution of micro-scale RVE shows that the maximum value of microscopic stress, which is located in the interlayer matrix, is more than 1.5 times that of macroscopic stress in the same direction and the microscopic stress distribution of the interlayer matrix is related to the pore distribution of the composite. 展开更多
关键词 Ceramic matrix composites Multi-scale Representative volume element Thermal-mechanical coupling Turbine guide vane
原文传递
Design and numerical investigation of swirl recovery vanes for the Fokker 29 propeller 被引量:4
13
作者 Wang Yangang Li Qingxi +2 位作者 G.Eitelberg L.L.M.Veldhuis M.Kotsonis 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1128-1136,共9页
Swirl recovery vanes(SRVs) are a set of stationary vanes located downstream from a propeller, which may recover some of the residual swirl from the propeller, hoping for an improvement in both thrust and efficiency.... Swirl recovery vanes(SRVs) are a set of stationary vanes located downstream from a propeller, which may recover some of the residual swirl from the propeller, hoping for an improvement in both thrust and efficiency. The SRV concept design for a scaled version representing the Fokker 29 propeller is performed in this paper, which may give rise to a promotion in propulsive performance of this traditional propeller. Firstly the numerical strategy is validated from two aspects of global quantities and the local flow field of the propeller compared with experimental data, and then the exit flow together with the development of propeller wake is analyzed in detail.Three kinds of SRV are designed with multiple circular airfoils. The numerical results show that the swirl behind the propeller is recovered significantly with Model V3, which is characterized by the highest solidity along spanwise, for various working conditions, and the combination of rotor and vane produced 5.76% extra thrust at the design point. However, a lower efficiency is observed asking for a better vane design and the choice of a working point. The vane position is studied which shows that there is an optimum range for higher thrust and efficiency. 展开更多
关键词 Multiple circular airfoil Propellers Propulsion efficiency Swirl recovery vane Turboprop engine
原文传递
3D Vane⁃XD⁃mDixon序列在胸椎增强MRI中的应用效果评价
14
作者 谢定祥 陈笑芳 +4 位作者 张印宏 吴嘉乐 马慧 蔡华崧 张馨月 《岭南现代临床外科》 2023年第5期405-409,共5页
目的探究3D⁃VANE⁃XD⁃mDixon序列在胸椎增强核磁共振成像(MRI)成像中对图像质量的影响及其应用价值。方法收集临床怀疑胸椎病变患者63例,行常规胸椎MRI后补充3D⁃T1WI⁃mDixon⁃TSE及3D⁃Vane⁃XD⁃mDixon序列。计算并测量两种扫描序列图像的... 目的探究3D⁃VANE⁃XD⁃mDixon序列在胸椎增强核磁共振成像(MRI)成像中对图像质量的影响及其应用价值。方法收集临床怀疑胸椎病变患者63例,行常规胸椎MRI后补充3D⁃T1WI⁃mDixon⁃TSE及3D⁃Vane⁃XD⁃mDixon序列。计算并测量两种扫描序列图像的椎体信噪比(SNR)、对比噪声比(CNR),并采用5分法对图像进行主观评分,比较两个序列对胸椎的诊断价值。结果在客观评分方面,3D⁃Vane⁃XD⁃mDixon序列图像与T1WI⁃mDixon⁃TSE序列图像的SNR分别为258.30(41.63,1982.67),133.05(18.90,584.34);CNR分别为114.67(22.32,740.17),23.44(6.44,224.77)。3D⁃Vane⁃XD⁃mDixon序列的SNR、CNR均高于T1WI⁃mDixon⁃TSE序列(Z=-4.042,P<0.001;Z=-4.107,P<0.001)。在主观评分方面,2名诊断医师对T1WI⁃mDixon⁃TSE和3D⁃Vane⁃XD⁃mDixon图像主观评分分别为3.03±0.53,3.09±0.47;4.17±0.50,3.96±0.69。3D⁃Vane⁃XD⁃mDixon序列(kappa=0.723)与T1WI⁃mDixon⁃TSE(kappa=0.685)的一致性均较好(kappa>0.61),具体表现为3D⁃Vane⁃XD⁃mDixon序列图像的整体质量评分明显优于T1WI⁃mDixon⁃TSE序列图像,且差异具有统计学意义(P<0.001)。结论使用3D⁃Vane⁃XD⁃mDixon序列,可明显提高胸椎增强图像质量,为疾病诊断提供精准的图像信息。 展开更多
关键词 胸椎 磁共振成像 3D⁃Vane⁃XD⁃mDixon序列
下载PDF
Numerical and experimental study on the particle erosion and gas–particle hydrodynamics in an integral multi-jet swirling spout-fluidized bed
15
作者 Wenbin Li Feng Wu +2 位作者 Liuyun Xu Jipeng Sun Xiaoxun Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期90-101,共12页
In this paper,using the computational fluid dynamics based on Euler Lagrange and the commercial software Barracuda VR,the gas-particle hydrodynamics and the erosion of particles on the inner wall and internal componen... In this paper,using the computational fluid dynamics based on Euler Lagrange and the commercial software Barracuda VR,the gas-particle hydrodynamics and the erosion of particles on the inner wall and internal components of the spouted bed in the integrated multi-jet swirling spout-fluidized bed(IMSSFB)are studied.Erosion experiments have obtained the characterization of particle erosion on internal components and verified the relevant numerical models.The results show that:the particle distribution within the IMSSFB is uneven due to the cyclonic effect of the axial swirl vane(ASV),resulting in particle erosion for the ASV being concentrated on one side;when the gas reaches the top,too high an erosion gas velocity leads to gas backflow.As the filling height increases,there is a tendency for the erosion position of the particles on the ASV to expand upwards.However,the effect of increasing gas velocity on the erosion position is insignificant. 展开更多
关键词 Integral multi-jet swirling spout-fluidized bed Gas–particle hydrodynamics Axial swirl vane Uneven Erosion
下载PDF
船体风机叶片对中速船水动力性能影响的计算分析
16
作者 S.Gopinath R.Vijayakumar 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第4期762-774,共13页
The importance of reducing ship resistance is growing considerably as a result of the increase in atmospheric emissions and the drive towards green shipping through decarbonization.Until this point,Energy Saving Devic... The importance of reducing ship resistance is growing considerably as a result of the increase in atmospheric emissions and the drive towards green shipping through decarbonization.Until this point,Energy Saving Devices(ESD),in particular,Hull Vane®(HV),have been widely applied as a potential technique for reducing wave-making resistance for vessels with higher Froude Number(Fr).The advantages of HV for a medium-speed vessel,where the wave-making component accounts for almost 50%of total resistance,have yet to be investigated.This study presents the computational analysis of the KCS model(1∶75.5);for a particular trim condition by using the VOF method and RANS solver.The hull acts as a candidate vessel for the class of medium-speed characteristics.A total of 36 numerical simulations were carried out to study the changes in resistance and motion characteristics of the vessel with and without HV.To validate the numerical setup,the experimental work of Hou et al(2020)on the DTMB hull was used.The effectiveness of HV can be comprehended by the reduction percentage in total resistance,trim,sinkage,and transom wave height,in comparison to bare hull condition.The reduction in total resistance extends up to 6%for Fr=0.32 with configuration 2 with negative AoF.The CFD results indicate that there is a reduction in trim up to 57%for the maximum speed with a corresponding Fr=0.34 with a positive angle of foil(AoF).The trim correction effect is increasing with the depth of submergence of HV.Concerning sinkage,there occurs nearly a 31%reduction for Fr=0.34 with a positive AoF.There exists a substantial reduction in the height of the transom wave with the inclusion of HV,the results of which are discussed in detail.From the presented results,retrofitting the Hull Vane®is effective in the selected speed range but pronouncing as the speed of the vessel increases. 展开更多
关键词 Decarbonization Green shipping Ship resistance Energy saving devices(ESD) Hull vane®.(HV) Angle of foil(AoF)
下载PDF
VSV系统对CFM56发动机喘振的影响分析 被引量:12
17
作者 李世林 《科学技术与工程》 2011年第20期4934-4936,4940,共4页
航空发动机喘振是发动机衰退过程中的常发的故障,而发动机VSV系统的工作状态直接影响发动机的喘振裕度。以CFM56—3发动机的VSV系统为研究对象,讨论其工作机理,分析其对处于衰退期的CFM56—3发动机稳定工作的影响,提出相应的维修注意事... 航空发动机喘振是发动机衰退过程中的常发的故障,而发动机VSV系统的工作状态直接影响发动机的喘振裕度。以CFM56—3发动机的VSV系统为研究对象,讨论其工作机理,分析其对处于衰退期的CFM56—3发动机稳定工作的影响,提出相应的维修注意事项。从而为研究以VSV故障为诱因的喘振提供理论依据,为相关维修提供工程参考。 展开更多
关键词 喘振 可调静子叶片(Variable STATOR Vane VSV)系统 CFM56
下载PDF
Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios 被引量:1
18
作者 Hojat Karami Saeed Farzin +1 位作者 Mohammad Tavakol Sadrabadi Hasan Moazeni 《Water Science and Engineering》 EI CAS CSCD 2017年第3期246-255,共10页
A comprehensive understanding of the sediment behavior at the entrance of diversion channels requires complete knowledge of threedimensional(3 D) flow behavior around such structures. Dikes and submerged vanes are typ... A comprehensive understanding of the sediment behavior at the entrance of diversion channels requires complete knowledge of threedimensional(3 D) flow behavior around such structures. Dikes and submerged vanes are typical structures used to control sediment entrainment in the diversion channel. In this study, a 3 D computational fluid dynamic(CFD) code was calibrated with experimental data and used to evaluate flow patterns, the diversion ratio of discharge, the strength of secondary flow, and dimensions of the vortex inside the channel in various dike and submerged vane installation scenarios. Results show that the diversion ratio of discharge in the diversion channel is dependent on the width of the flow separation plate in the main channel. A dike perpendicular to the flow with a narrowing ratio of 0.20 doubles the ratio of diverted discharge in addition to reducing suspended sediment input to the basin, compared with a no-dike situation, by creating the outer arch conditions. A further increase in the narrowing ratio decreases the diverted discharge. In addition, increasing the longitudinal distance between consecutive vanes(Ls) increases the velocity gradient between the vanes and leads to a more severe erosion of the bed, near the vanes. 展开更多
关键词 Three-dimensional SIMULATION Computational fluid dynamics SUBMERGED vanes DIKE Side and VORTEX flow
下载PDF
Numerical Investigation on the Secondary Flow Control by Using Splitters at Different Positions with Respect to the Main Blade 被引量:1
19
作者 Tao Bian Xin Shen +1 位作者 Jun Feng Bing Wang 《Fluid Dynamics & Materials Processing》 EI 2021年第3期615-628,共14页
In turbomachinery,strong secondary flow can produce significant losses of total pressure near the endwall and reduce the efficiency of the considered turbomachine.In this study,splitters located at different positions... In turbomachinery,strong secondary flow can produce significant losses of total pressure near the endwall and reduce the efficiency of the considered turbomachine.In this study,splitters located at different positions with respect to the main blade have been used to reduce such losses and improve the efficiency of the outlet guide vane(OGV).Three different relative positions have been considered assuming a NACA 65-010 profile for both the main blade and the splitter.The numerical results indicate that splitters can effectively reduce the total pressure loss by suppressing the secondary flow around the main blade,but the splitters themselves also produce flow losses,which are caused by flow separation effects. 展开更多
关键词 Total pressure loss splitters relative position secondary flow guide vanes
下载PDF
纪念Sir John Vane——诺贝尔医学奖获得者
20
作者 魏伟 黄河胜 《中国药理学通报》 CAS CSCD 北大核心 2005年第2期i002-i002,共1页
关键词 获得者 医学奖 Sir John Vane 药理学家 John 诺贝尔
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部