期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Flow pattern and pressure drop of gas-liquid two-phase swirl flow in a horizontal pipe 被引量:5
1
作者 RAO Yong-chao DING Bo-yang +2 位作者 WANG Shu-li WANG Zi-wen ZHOU Shi-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2528-2542,共15页
The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value ... The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%. 展开更多
关键词 swirl flow two-phase flow flow pattern swirl number pressure drop
下载PDF
Oil–water two-phase flow pattern analysis with ERT based measurement and multivariate maximum Lyapunov exponent 被引量:8
2
作者 谭超 王娜娜 董峰 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期240-248,共9页
Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus th... Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis. 展开更多
关键词 oil-water two-phase flow flow patterns electrical resistance tomography (ERT) multivariate time-series multivariate maximum Lyapunov exponent correlation dimension
下载PDF
TWO-PHASE FLOW PATTERNS IN A 90° BEND AT MICROGRAVITY 被引量:2
3
作者 赵建福 K.S.GABRIEL 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第3期206-211,共6页
Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In... Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In the present study,a set of experimental data of two-phase flow patterns and their transitions in a 90°bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported.Gas and liquid superficial velocities are found to range from (1.0~23.6)m/s for gas and(0.09~0.5)m/s for liquid,respectively.Three major flow patterns, namely slug,slug-annular transitional,and annular flows,are observed in this study.Focusing on the differences between flow patterns in bends and their counterparts in straight pipes,detailed analyses of their characteristics are made.The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes,and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined. 展开更多
关键词 two-phase flow flow patterns 90°bend MICROGRAVITY
下载PDF
The Effect of Sudden Change in Pipe Diameter on Flow Patterns of Air-Water Two-Phase Flow in Vertical Pipe (II) Sudden-Expansion Cross-Section 被引量:2
4
作者 杨英珍 李广军 +1 位作者 周芳德 陈学俊 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期221-223,共3页
In this companion paper, flow patterns in the upstream and downstream tubes of a sudden-expansion cross-section (SECS) in a vertical straight pipe were presented. The effect of SECS on flow patterns upstream and down... In this companion paper, flow patterns in the upstream and downstream tubes of a sudden-expansion cross-section (SECS) in a vertical straight pipe were presented. The effect of SECS on flow patterns upstream and downstream was analyzed by comparing with flow patterns in uniform cross-section vertical tubes. It is found the effect is great. There exist great instabilities of two-phase flow in the neighboring areas of the SECS both downstream and upstream. 展开更多
关键词 gas-liquid two-phase flow flow pattern sudden-expansion cross-section
下载PDF
The Effect of Sudden Change in Pipe Diameter on Flow Patterns of Air-Water Two-Phase Flow in Vertical Pipe (I) Sudden-Contraction Cross-Section 被引量:1
5
作者 杨英珍 李广军 +1 位作者 周芳德 陈学俊 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第1期116-119,共4页
Flow patterns upstream and downstream of a sudden-contraction cross-section in a vertical straight pipe were presented. By comparing with flow patterns in uniform cross-section vertical tubes, the effect of the sudde... Flow patterns upstream and downstream of a sudden-contraction cross-section in a vertical straight pipe were presented. By comparing with flow patterns in uniform cross-section vertical tubes, the effect of the sudden change in pipe diameter on flow patterns was analyzed. Flow pattern transition mechanisms were discussed and transition criteria for flow pattern transitions were deduced accordingly using the dimensional analysis. 展开更多
关键词 gas-liquid two-phase flow flow pattern sudden-contraction cross-section
下载PDF
Liquid-liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance
6
作者 Ming Chen Huiyan Jiao +3 位作者 Jun Li Zhibin Wang Feng He Yang Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期281-289,共9页
In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are o... In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are observed in the wire-embedded concentric microchannel. The effects of embedded wires and physical properties on flow patterns are investigated. The embedded wire insert is conducive to the formation of annular flow. The flow pattern distribution regions are distinguished by the Caaq(capillary number)±We_(org)(Weber number) flow pattern map. When Weorg<0.001, slug flow is the main flow pattern, and when Weorg>0.1, annular flow is the main flow pattern. Oval flow and droplet flow are between We_(org)= 0.001-0.1, and oval flow is transformed into droplet flow with the increase of Caaq. The effect of flow rate, phase ratio, initial acetic acid concentration, insert shape and flow patterns on mass transfers are studied. Mass transfer process is enhanced under annular flow conditions, the volumetric mass transfer coefficient is up to 0.36 s^(-1) because of the high interfacial area and interface renewal rate of annular flow. 展开更多
关键词 flow pattern Mass transfer Microchannels two-phase flow
下载PDF
Experimental analysis on adjusting performance of vapor-liquid two-phase flow controller
7
作者 李慧君 屠珊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第5期525-530,共6页
The vapor-liquid self-adjusting controller is an innovative automatic regulating valve.In order to ensure adjusted objects run safely and economically,the controller automatically adjusts the liquid flux to keep liqui... The vapor-liquid self-adjusting controller is an innovative automatic regulating valve.In order to ensure adjusted objects run safely and economically,the controller automatically adjusts the liquid flux to keep liquid level at a required level according to physical properties of vapor-liquid two-phase fluid.The adjusting mechanics,the controller’s performance and influencing factors of its stability have been analyzed in this paper.The theoretical analysis and successful applications have demonstrated this controller can keep the liquid level steady with good performance.The actual application in industry has shown that the controller can satisfactorily meet the requirement of industrial production and has wide application areas. 展开更多
关键词 vapor-liquid two-phase flow adjusting performance liquid level controller
下载PDF
An Experimental Study on the Flow Characteristics of OilWater Two-Phase Flow in Horizontal Straight Pipes 被引量:7
8
作者 刘文红 郭烈锦 +1 位作者 吴铁军 张西民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第5期491-496,共6页
The flow patterns and their transitions of oil-water two-phase flow in horizontal pipes were studied. The experiments were conducted in two kinds of horizontal tubes, made of plexiglas pipe and stainless steel pipe wi... The flow patterns and their transitions of oil-water two-phase flow in horizontal pipes were studied. The experiments were conducted in two kinds of horizontal tubes, made of plexiglas pipe and stainless steel pipe with 40 mm ID respectively. No. 46 mechanical oil and tap water were used as working fluids. The superflcial velocity ranges of oil and water were: 0.04-1.2m·s-1 and 0.04-2.2m·s-1, respectively. The flow patterns were identified by visualization and by transient fluctuation signals of differential pressure drop. The flow patterns were defined according to the relative distribution of oil and water phases in the pipes. Flow pattern maps were obtained for both pipelines. In addition, semi-theoretical transition criteria for the flow patterns were proposed, and the proposed transitional criteria are in reasonable agreement with available data in liquid-liquid systems. 展开更多
关键词 oil-water two-phase flow horizontal pipe flow pattern transition criterion
下载PDF
Experimental Research on Gas-Liquid Two-Phase Spiral Flow in Horizontal Pipe 被引量:8
9
作者 Wang Shuli Rao Yongchao +1 位作者 Wu Yuxian Wang Xiaobing 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第3期24-32,共9页
In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different para... In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different parameters investigated by means of observation and a high-speed camera.Since the appearance of spiral flow makes the distribution of twophase flow more complicated,the flow patterns appearing in the experiments were divided into the Spiral Wavy Stratified Flow(SWS),the Spiral Bubble Flow(SB),the Spiral Slug Flow(SS),the Spiral Linear Flow(SL),the Spiral Axial Flow(SA),and the Spiral Dispersed Flow(SD) by the observations and with reference to the predecessors' research achievements.A flow pattern map has been drawn up.The influence of velocity,vane angle and vane area on flow pattern conversion boundary and pressure drop has been studied,with a solid foundation laid for the future research work. 展开更多
关键词 gas-liquid two-phase spiral flow VANE flow pattern flow pattern map experimental research
下载PDF
Local Flow Regime Transition Criteria of Gas-Liquid Two-phase Flow in Vertical Upward Tube with a Horizontal Rod 被引量:4
10
作者 胡志华 杨燕华 +1 位作者 刘磊 周芳德 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4期442-449,共8页
The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vert... The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed. 展开更多
关键词 GAS-LIQUID two-phase cross flow local flow pattern transition
下载PDF
Liquid holdup measurement with double helix capacitance sensor in horizontal oil-water two-phase flow pipes 被引量:5
11
作者 翟路生 金宁德 +1 位作者 高忠科 王振亚 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期268-275,共8页
This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity... This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity field of the sensor in a pipe with 20 mm inner diameter and the effect of sensor geometry on the distribution of sensitivity field is presented. Then, a horizontal oil–water two-phase flow experiment is carried out to measure the response of the double helix capacitance sensor, in which a novel method is proposed to calibrate the liquid holdup based on three pairs of parallel-wire capacitance probes. The performance of the sensor is analyzed in terms of the flow structures detected by mini-conductance array probes. 展开更多
关键词 Horizontal oil–water two-phase flow Liquid holdup measurement Double helix capacitance sensor flow pattern
下载PDF
Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM 被引量:2
12
作者 Nsidibe Sunday Abdelhakim Settar +1 位作者 Khaled Chetehouna Nicolas Gascoin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1183-1199,共17页
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ... Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation. 展开更多
关键词 flow assurance flow pattern Heat transfer flowlines two-phase flow Global sensitivity analysis
下载PDF
Analysis of dynamic of two-phase flow in small channel based on phase space reconstruction combined with data reduction sub-frequency band wavelet 被引量:3
13
作者 李洪伟 刘君鹏 +2 位作者 李涛 周云龙 孙斌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第6期1017-1026,共10页
A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler... A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel. 展开更多
关键词 Small channel two-phase flow flow pattern dynamics Phase space reconstruction Data reduction sub-frequency band wavelet
下载PDF
Markov transition probability-based network from time series for characterizing experimental two-phase flow 被引量:1
14
作者 高忠科 胡沥丹 金宁德 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期226-231,共6页
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments f... We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns. 展开更多
关键词 complex network time series analysis chaotic dynamics two-phase flow pattern
下载PDF
Local Flow Regime Transition Criteria of Gas-Liquid Two-phase Flow in Vertical Upward Tube with a Horizontal Rod
15
作者 胡志华 杨燕华 +1 位作者 刘磊 周芳德 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4X期442-449,共8页
The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vert... The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed. 展开更多
关键词 GAS-LIQUID two-phase cross flow LOCAL flow pattern transition
下载PDF
Branch Quality Control of Gas-Liquid Two-Phase Flow Using a Novel T-Junction Type Distributor
16
作者 Fa-Chun Liang Jing Chen +1 位作者 Jin-Long Wang Hao Yu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第4期110-115,共6页
In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section,a gas extra... In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section,a gas extraction line,a liquid extraction line and a side arm branch. A gas orifice and a liquid orifice are mounted at the gas and liquid extraction line respectively to control the outlet gas quality. The diameter of the liquid orifice was set to 2. 50 mm and three gas orifices with different size( dG= 2. 65,5. 00,10. 00 mm) were tested. The experiments were carried out at an air-water two-phase flow loop. The gas superficial velocity ranged from 6. 0 to 20. 0 m /s and the liquid superficial velocity was in the range of 0. 02- 0. 18 m /s. Flow patterns such as wave flow,slug flow and annular flow were observed. The gas quality of the side arm branch was found mainly determined by the flow area ratio of the gas orifice to the liquid orifice and independent of gas and liquid superficial velocity,flow patterns and extraction flux. 展开更多
关键词 gas-liquid two-phase flow DISTRIBUTOR phase splitting flow pattern quality control
下载PDF
MaI-Uniformity of Two-Phase Flow Distribution in Merged Pipe Distributor under Different Outlet Channel Length
17
作者 Muh. Anis Mustaghfirin Akio Miyara Hirata Yuki 《Journal of Mechanics Engineering and Automation》 2013年第2期107-120,共14页
Two-phase flow distributions in the merged pipe distributor have still remained mal-uniformity problem and the causes have not clearly discovered yet. Therefore, the enhancement study is needed, absolutely. The experi... Two-phase flow distributions in the merged pipe distributor have still remained mal-uniformity problem and the causes have not clearly discovered yet. Therefore, the enhancement study is needed, absolutely. The experimental was carried out upon the distributor constructed by acrylics resembling merged triple pipe, 8 mm in diameter of inlet channel and two set 5 mm in diameter of each outlet channel, set horizontally sideways. Three flow patterns were fed, i.e., bubble, slug and stratified flow, observed via high speed video camera. The pressure distribution was measured by series of U-tube water gauge manometer. The flow patterns, phase distribution and pressure drop were analyzed by CFD software, validated by experimental data and compared by existing correlation, analytically. The experiment is extended by modeling, in order to vary three inclinations of distributor: horizontally, 45° and vertically up-ward as well as to vary three outlet channel lengths with length ratio lc/dc: 3.2, 10 and 70. It was revealed that the two-phase flow distribution tends to be mal-uniform and to transform to different flow pattern in outlet channels. These are promoted by different: outlet channel length, feeding two-phase flow pattern in inlet distributor and inclination angle. The changing of flow pattern is driven by fluctuating velocity in both upper and lower outlet channel. 展开更多
关键词 Mal-uniformity two-phase flow pressure drop DISTRIBUTOR flow pattern.
下载PDF
Insight into evolution of invasive patterns on fingering phenomenon during immiscible two-phase flow through pore structure
18
作者 Yu Li Hui-Qing Liu +3 位作者 Chao Peng Peng Jiao Wai Lam Loh Qing Wang 《Petroleum Science》 SCIE EI CAS 2024年第5期3307-3325,共19页
Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typica... Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typically governed by gravity, viscous and capillary forces, these factors lead invasive fluids to occupy pore space irregularly and incompletely. Previous studies have demonstrated capillary numbers,describing the viscous and capillary forces, to quantificationally induce evolution of invasion patterns.While the evolution mechanisms of invasive patterns have not been deeply elucidated under the constant capillary number and three variable parameters including velocity, viscosity, and interfacial tension.Our research employs two horizontal visualization systems and a two-phase laminar flow simulation to investigate the tendency of invasive pattern transition by various parameters at the pore scale. We showed that increasing invasive viscosity or reducing interfacial tension in a homogeneous pore space significantly enhanced sweep efficiency, under constant capillary number. Additionally, in the fingering crossover pattern, the region near the inlet was prone to capillary fingering with multi-directional invasion, while the viscous fingering with unidirectional invasion was more susceptible occurred in the region near the outlet. Furthermore, increasing invasive viscosity or decreasing invasive velocity and interfacial tension promoted the extension of viscous fingering from the outlet to the inlet, presenting that the subsequent invasive fluid flows toward the outlet. In the case of invasive trunk along a unidirectional path, the invasive flow increased exponentially closer to the outlet, resulting in a significant decrease in the width of the invasive interface. Our work holds promising applications for optimizing invasive patterns in heterogeneous porous media. 展开更多
关键词 Immiscible two-phase flow Fingering phenomenon Invasive pattern Capillary number Parameters optimization
下载PDF
Application of time–frequency entropy from wake oscillation to gas–liquid flow pattern identification 被引量:6
19
作者 HUANG Si-shi SUN Zhi-qiang +1 位作者 ZHOU Tian ZHOU Jie-min 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1690-1700,共11页
Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this s... Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems. 展开更多
关键词 gas–liquid two-phase flow wake oscillation flow pattern map time–frequency entropy ensemble empirical mode decomposition Hilbert transform
下载PDF
Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles
20
作者 Xuejing He Zhenlin Li +1 位作者 Ji Wang Hai Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期16-25,共10页
The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes o... The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer. 展开更多
关键词 Tube shapes flow pattern Liquid film thickness Heat transfer two-phase flow
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部