期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
DYNAMIC MODEL AND SIMULATION OF A NOVEL ELECTRO-HYDRAULIC FULLY VARIABLE VALVE SYSTEM FOR FOUR-STROKE AUTOMOTIVE ENGINES 被引量:3
1
作者 WONG Pak-kin TAM Lap-mou LI Ke 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期80-86,共7页
In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke autom... In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility. 展开更多
关键词 Fully variable engine valve train Dynamic model simulation
下载PDF
Simulation of Variable Air Volume System with Different Duct Layout 被引量:1
2
作者 陈华 涂光备 FRANCIS W H Yika 《Transactions of Tianjin University》 EI CAS 2004年第1期24-28,共5页
The duct static pressure reset (DSPR) control method is a popular modern control method widely applied to variable air volume (VAV) systems of commercial buildings. In this paper, a VAV system simulation program was u... The duct static pressure reset (DSPR) control method is a popular modern control method widely applied to variable air volume (VAV) systems of commercial buildings. In this paper, a VAV system simulation program was used to predict the system performance and zone air temperature of two kinds of layouts that were applied to a typical floor of an existing building office in Hong Kong. The position where the static pressure sensor was placed should affect the zones temperature and energy consumption. The comparison of predictions of the two kinds of layouts indicates that with the same DSPR control method the layout of the air duct might influence the fan control result and energy savings. 展开更多
关键词 variable air volume (VAV) system simulation air duct layout duct static pressure reset control
下载PDF
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
3
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
下载PDF
Parameter design and performance analysis of zero inertia continuously variable transmission system 被引量:1
4
作者 胡建军 吉毅 晏玖江 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期180-188,共9页
In order to solve the problem of weak power performance of vehicle equipped with continuously variable transmission(CVT) system working under transient operating conditions, a new CVT equipped with planetary gear mech... In order to solve the problem of weak power performance of vehicle equipped with continuously variable transmission(CVT) system working under transient operating conditions, a new CVT equipped with planetary gear mechanism and flywheel was researched, a design method of transmission parameter optimization was proposed, and the comprehensive matching control strategy was established for the new transmission system. Fuzzy controllers for throttle opening and CVT speed ratio were designed, and power performance and fuel economy of both vehicles respectively equipped with conventional CVT system and new transmission system wrere compared and analyzed by simulation. The results show that power performance and fuel economy of the vehicle equipped with new transmission system are better than that equipped with conventional CVT, thus the rationality of the parameter design method and control algorithm are verified. 展开更多
关键词 continuously variable transmission inertia optimization fuzzy control simulation
下载PDF
Spectral Analysis of Blood Pressure Variability as a Quantitative Indicator of Driving Fatigue
5
作者 李增勇 焦昆 +1 位作者 陈铭 王成焘 《Journal of Donghua University(English Edition)》 EI CAS 2004年第1期85-88,共4页
The quantitative detector of driver fatigue presents appropriate warnings and helps to prevent traffic accidents.The aim of this study was to quantifiably evaluate driver mental fatigue using the power spectral analys... The quantitative detector of driver fatigue presents appropriate warnings and helps to prevent traffic accidents.The aim of this study was to quantifiably evaluate driver mental fatigue using the power spectral analysis of the blood pressure variability (BPV) and subjective evaluation. In this experiment twenty healthy male subjects were required to perform a driving simulator task for 3-hours. The physiological variables for evaluating driver mental fatigue were spectral values of blood pressure variability (BPV)including very low frequency (VLF), low frequency (LF),high frequency (HF). As a result, LF, HF and LF/HF showed high correlations with driver mental fatigue but not found in VLF. The findings represent a possible utility of BPV spectral analysis in quantitatively evaluating driver mental fatigue. 展开更多
关键词 Driving fatigue Blood pressure variability Driving simulator
下载PDF
Multi-scale variability of the tropical Indian Ocean circulation system revealed by recent observations 被引量:4
6
作者 Ke HUANG Dongxiao WANG +4 位作者 Weiqiang WANG Qiang XIE Ju CHEN Lingfang CHEN Gengxin CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第6期668-680,共13页
The tropical Indian Ocean circulation system includes the equatorial and near-equatorial circulations, the marginal sea circulation, and eddies. The dynamic processes of these circulation systems show significant mult... The tropical Indian Ocean circulation system includes the equatorial and near-equatorial circulations, the marginal sea circulation, and eddies. The dynamic processes of these circulation systems show significant multi-scale variability associated with the Indian Monsoon and the Indian Ocean dipole. This paper summarizes the research progress over recent years on the tropical Indian Ocean circulation system based on the large-scale hydrological observations and numerical simulations by the South China Sea Institute of Oceanology(SCSIO), Chinese Academy of Sciences. Results show that:(1) the wind-driven Kelvin and Rossby waves and eastern boundary-reflected Rossby waves regulate the formation and evolution of the Equatorial Undercurrent and the Equatorial Intermediate Current;(2) the equatorial wind-driven dynamics are the main factor controlling the inter-annual variability of the thermocline in the eastern Indian Ocean upwelling;(3) the equatorial waves transport large amounts of energy into the Bay of Bengal in forms of coastal Kelvin and reflected free Rossby waves. Several unresolved issues within the tropical Indian Ocean are discussed:(i) the potential effects of the momentum balance and the basin resonance on the variability of the equatorial circulation system, and(ii) the potential contribution of wind-driven dynamics to the life cycle of the eastern Indian Ocean upwelling. This paper also briefly introduces the international Indian Ocean investigation project of the SCSIO, which will advance the study of the multi-scale variability of the tropical Indian Ocean circulation system, and provide a theoretical and data basis to support marine environmental security for the countries around the Maritime Silk Road. 展开更多
关键词 Equatorial undercurrent Equatorial intermediate current Eastern Indian Ocean upwelling Bay of Bengal circu lation Multi-scale variability Equatorial wave dynamics Observation and simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部