期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improved Variable Forgetting Factor Proportionate RLS Algorithm with Sparse Penalty and Fast Implementation Using DCD Iterations
1
作者 Han Zhen Zhang Fengrui +2 位作者 Zhang Yu Han Yanfeng Jiang Peng 《China Communications》 SCIE CSCD 2024年第10期16-27,共12页
The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms wit... The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms with a sparse regularization term.In this paper,we propose a variable forgetting factor(VFF)PRLS algorithm with a sparse penalty,e.g.,l_(1)-norm,for sparse identification.To reduce the computation complexity of the proposed algorithm,a fast implementation method based on dichotomous coordinate descent(DCD)algorithm is also derived.Simulation results indicate superior performance of the proposed algorithm. 展开更多
关键词 dichotomous coordinate descent proportionate matrix RLS sparse systems variable forgetting factor
下载PDF
Iterative identification of output error model for industrial processes with time delay subject to colored noise 被引量:1
2
作者 董世健 刘涛 +1 位作者 李明忠 曹毅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2005-2012,共8页
To deal with colored noise and unexpected load disturbance in identification of industrial processes with time delay, a bias-eliminated iterative least-squares(ILS) identification method is proposed in this paper to e... To deal with colored noise and unexpected load disturbance in identification of industrial processes with time delay, a bias-eliminated iterative least-squares(ILS) identification method is proposed in this paper to estimate the output error model parameters and time delay simultaneously. An extended observation vector is constructed to establish an ILS identification algorithm. Moreover, a variable forgetting factor is introduced to enhance the convergence rate of parameter estimation. For consistent estimation, an instrumental variable method is given to deal with the colored noise. The convergence and upper bound error of parameter estimation are analyzed. Two illustrative examples are used to show the effectiveness and merits of the proposed method. 展开更多
关键词 Time delay system Output error model Recursive least-squares Instrumental variable variable forgetting factor
下载PDF
Modeling and state of charge estimation of lithium-ion battery 被引量:7
3
作者 Xi-Kun Chen Dong Sun 《Advances in Manufacturing》 SCIE CAS CSCD 2015年第3期202-211,共10页
Modeling and state of charge (SOC) estimation of lithium-ion (Li-ion) battery are the key techniques of battery pack management system (BMS) and critical to its reliability and safety operation. An auto-regressi... Modeling and state of charge (SOC) estimation of lithium-ion (Li-ion) battery are the key techniques of battery pack management system (BMS) and critical to its reliability and safety operation. An auto-regressive with exogenous input (ARX) model is derived from RC equivalent circuit model (ECM) due to the discrete-time characteristics of BMS. For the time-varying environmental factors and the actual battery operating conditions, a variable forgetting factor recursive least square (VFFRLS) algorithm is adopted as an adaptive parameter identifica- tion method. Based on the designed model, an SOC estimator using cubature Kalman filter (CKF) algorithm is then employed to improve estimation performance and guarantee numerical stability in the computational procedure. In the battery tests, experimental results show that CKF SOC estimator has a more accuracy estimation than extended Kalman filter (EKF) algorithm, which is widely used for Li-ion battery SOC estimation, and the maximum estimation error is about 2.3%. 展开更多
关键词 Lithium-ion (Li-ion) battery variable forgetting factor recursive least square (VFFRLS) Cubature Kalman filter (CKF) Extended Kalman filter (EKF)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部