The fractional integral operators with variable kernels are discussed.It is proved that if the kernel satisfies the Dini-condition,then the fractional integral operators with variable kernels are bounded from Hp(Rn) i...The fractional integral operators with variable kernels are discussed.It is proved that if the kernel satisfies the Dini-condition,then the fractional integral operators with variable kernels are bounded from Hp(Rn) into Lq(Rn) when 0<p≤1 and 1/q=1/p-α/n.The results in this paper improve the results obtained by Ding,Chen and Fan in 2002.展开更多
In this paper,the authors introduce the central bounded oscillation space CBMO q (R n),let [b,T,α ] be the commutator generated by fractional integral operators with variable kernels and CBMO function,we establish th...In this paper,the authors introduce the central bounded oscillation space CBMO q (R n),let [b,T,α ] be the commutator generated by fractional integral operators with variable kernels and CBMO function,we establish the boundedness of [b,T,α ] on homogeneous Morrey-Herz spaces.展开更多
Let α≥ 0 and 0 〈 ρ ≤ n/2, the boundedness of hypersingular parameterized Marcinkiewicz integrals μΩ,α^ρ with variable kernels on Sobolev spaces Lα^ρ and HardySobolev spaces Hα^ρ is established.
In this paper,the parameterized Marcinkiewicz integrals with variable kernels defined by μΩ^ρ(f)(x)=(∫0^∞│∫│1-y│≤t Ω(x,x-y)/│x-y│^n-p f(y)dy│^2dt/t1+2p)^1/2 are investigated.It is proved that ...In this paper,the parameterized Marcinkiewicz integrals with variable kernels defined by μΩ^ρ(f)(x)=(∫0^∞│∫│1-y│≤t Ω(x,x-y)/│x-y│^n-p f(y)dy│^2dt/t1+2p)^1/2 are investigated.It is proved that if Ω∈ L∞(R^n) × L^r(S^n-1)(r〉(n-n1p'/n) is an odd function in the second variable y,then the operator μΩ^ρ is bounded from L^p(R^n) to L^p(R^n) for 1 〈 p ≤ max{(n+1)/2,2}.It is also proved that,if Ω satisfies the L^1-Dini condition,then μΩ^ρ is of type(p,p) for 1 〈 p ≤ 2,of the weak type(1,1) and bounded from H1 to L1.展开更多
The authors discuss Lipschitz boundedness for a class of fractional multilinear operators with variable kernels. It is obtained that these operators are both Lipschitz bounded from L^p to H^q.
In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singu...In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singular integral operators TΩ,fractional integrals TΩ,α and parametric Marcinkiewicz integrals μΩρ with variable kernels on the Hardy spaces Hp(Rn) and weak Hardy spaces WHP(Rn).Moreover,by using the interpolation arguments,we can get some corresponding results for the above integral operators with variable kernels on Hardy-Lorentz spaces Hp,q(Rn) for all p 〈 q 〈 ∞.展开更多
Let A be a function with derivatives of order m and D γ A ∈■β (0 〈 β 〈 1, |γ| = m). The authors in the paper prove that if Ω(x, z) ∈ L ∞ (R n ) × L s (S n 1 ) (s ≥ n/(n β)) is homogenou...Let A be a function with derivatives of order m and D γ A ∈■β (0 〈 β 〈 1, |γ| = m). The authors in the paper prove that if Ω(x, z) ∈ L ∞ (R n ) × L s (S n 1 ) (s ≥ n/(n β)) is homogenous of degree zero and satisfies the mean value zero condition about the variable z, then both the generalized commutator for Marcinkiewicz type integral μ A Ω and its variation μ A Ω are bounded from L p (R n ) to L q (R n ), where 1 〈 p 〈 n/β and 1/q = 1/p β/n. The authors also consider the boundedness of μ A Ω and its variation μ A Ω on Hardy spaces.展开更多
On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is present...On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.展开更多
In this paper, we study the boundedness of the fractional integral operator and their commutator on Herz spaecs with two variable exponents . By using the properties of the variable exponents Lebesgue spaces, the boun...In this paper, we study the boundedness of the fractional integral operator and their commutator on Herz spaecs with two variable exponents . By using the properties of the variable exponents Lebesgue spaces, the boundedness of the fractional integral operator and their commutator generated by Lipschitz function is obtained on those Herz spaces.展开更多
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho...In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.展开更多
Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper,...Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^γ on the weighted Morrey spaces.展开更多
Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this pa...Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this paper, the boundedness of Tb on weighted Morrey space are obtained when b belongs to the weighted Lipschitz function space and weighted BMO function space, respectively.展开更多
Let n≥2. In this paper, the author establishes the L2 (Rx)-boundedness of some oscillatory singular integrals with variable rough kernels by means of some estimates on hyper geometric functions and confluent hyper ge...Let n≥2. In this paper, the author establishes the L2 (Rx)-boundedness of some oscillatory singular integrals with variable rough kernels by means of some estimates on hyper geometric functions and confluent hyper geometric funtions.展开更多
In this paper, we study the boundedness of the fractional integral with variable kernel. Under some assumptions, we prove that such kind of operators is bounded from the variable exponent Herz-Morrey spaces to the var...In this paper, we study the boundedness of the fractional integral with variable kernel. Under some assumptions, we prove that such kind of operators is bounded from the variable exponent Herz-Morrey spaces to the variable exponent Herz-Morrey spaces.展开更多
In this paper, we will study the boundedness of the singular integral operator with variable Calder′on-Zygmund kernel on the weighted Morrey spaces Lp,κ(ω) for q′≤ p < ∞and 0 < κ < 1. Furthermore, the ...In this paper, we will study the boundedness of the singular integral operator with variable Calder′on-Zygmund kernel on the weighted Morrey spaces Lp,κ(ω) for q′≤ p < ∞and 0 < κ < 1. Furthermore, the boundedness for the commutator with BMO functions is also obtained.展开更多
To extend the kinetic formulation of city size distribution introduced in <a href="#ref1">[1]</a>, the non-Maxwellian kinetic modeling is introduced in the present study, in which a <em>var...To extend the kinetic formulation of city size distribution introduced in <a href="#ref1">[1]</a>, the non-Maxwellian kinetic modeling is introduced in the present study, in which a <em>variable collision kernel</em> is used in the underlying kinetic equation of Boltzmann type. By resorting to the well-known grazing asymptotic, a kinetic Fokker-Planck counterpart is obtained. The equilibrium of the Fokker-Planck equation belongs to the class of generalized Gamma distributions. Numerical test shows good fit of the generalized Gamma distribution with the city size distribution of China.展开更多
In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized w...In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized weighted Morrey spaces.And the corresponding commutators generated by BMO function are also considered.展开更多
In this paper the author proves that the commutator of the Marcinkiewicz integral operator with rough variable kernel is bounded from the homogeneous Sobolev space Lγ^2(R^n) to the Lebesgue space L^2(R^n), which ...In this paper the author proves that the commutator of the Marcinkiewicz integral operator with rough variable kernel is bounded from the homogeneous Sobolev space Lγ^2(R^n) to the Lebesgue space L^2(R^n), which is a substantial improvement and extension of some known results.展开更多
For b Е Lip(Rn), the CalderSn commutator with variable kernel is defined by[b,T1]f(x)=p.v∫RnΩ(x,x-y)/|x-y|^n+1(b(x))-b(y))f(y)dy In this paper, we establish the L2(Rn) boundedness for [b, T1] wi...For b Е Lip(Rn), the CalderSn commutator with variable kernel is defined by[b,T1]f(x)=p.v∫RnΩ(x,x-y)/|x-y|^n+1(b(x))-b(y))f(y)dy In this paper, we establish the L2(Rn) boundedness for [b, T1] with Ω(x, z') ∈L∞(Rn)×Lq(Sn-1)(q〉2(n-1)/n)satisfying certain cancellation conditions.Moreover, the exponent q 〉2(n - 1)/n is optimal. Our main result improves a previous result of Calderon.展开更多
基金Supported by the973Project( G1 9990 75 1 0 5 ) and the National Natural Science Foundation of China( 1 0 2 71 0 1 6)
文摘The fractional integral operators with variable kernels are discussed.It is proved that if the kernel satisfies the Dini-condition,then the fractional integral operators with variable kernels are bounded from Hp(Rn) into Lq(Rn) when 0<p≤1 and 1/q=1/p-α/n.The results in this paper improve the results obtained by Ding,Chen and Fan in 2002.
基金Supported by the Anhui Polytechnic University Foundation for Recruiting Talent(2011YQQ004)Supported by the Provincial Natural Science Research Project of Anhui Colleges(KJ2011A032)+1 种基金Supported by the Young Teachers Program of Anhui Province(2006jql042)Supported by the Grant for Younth of Anhui Polytechnic University (2010YQ047)
文摘In this paper,the authors introduce the central bounded oscillation space CBMO q (R n),let [b,T,α ] be the commutator generated by fractional integral operators with variable kernels and CBMO function,we establish the boundedness of [b,T,α ] on homogeneous Morrey-Herz spaces.
基金Supported by the National Natural Science Foundation of China(1057115610871173)
文摘Let α≥ 0 and 0 〈 ρ ≤ n/2, the boundedness of hypersingular parameterized Marcinkiewicz integrals μΩ,α^ρ with variable kernels on Sobolev spaces Lα^ρ and HardySobolev spaces Hα^ρ is established.
基金Supported by the National Natural Science Foundation of China (1057115610871173)
文摘In this paper,the parameterized Marcinkiewicz integrals with variable kernels defined by μΩ^ρ(f)(x)=(∫0^∞│∫│1-y│≤t Ω(x,x-y)/│x-y│^n-p f(y)dy│^2dt/t1+2p)^1/2 are investigated.It is proved that if Ω∈ L∞(R^n) × L^r(S^n-1)(r〉(n-n1p'/n) is an odd function in the second variable y,then the operator μΩ^ρ is bounded from L^p(R^n) to L^p(R^n) for 1 〈 p ≤ max{(n+1)/2,2}.It is also proved that,if Ω satisfies the L^1-Dini condition,then μΩ^ρ is of type(p,p) for 1 〈 p ≤ 2,of the weak type(1,1) and bounded from H1 to L1.
基金Supported by Zhejiang Provincial Natural Science Foundation of China under Grant (No.M103069)supported by the Education Dept. of Zhejiang Province(20021022)
文摘The authors discuss Lipschitz boundedness for a class of fractional multilinear operators with variable kernels. It is obtained that these operators are both Lipschitz bounded from L^p to H^q.
文摘In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singular integral operators TΩ,fractional integrals TΩ,α and parametric Marcinkiewicz integrals μΩρ with variable kernels on the Hardy spaces Hp(Rn) and weak Hardy spaces WHP(Rn).Moreover,by using the interpolation arguments,we can get some corresponding results for the above integral operators with variable kernels on Hardy-Lorentz spaces Hp,q(Rn) for all p 〈 q 〈 ∞.
基金Supported by the National Natural Science Foundation of China (No. 10871024)Chinese Universities Scientific Fund (BUPT 2009RC0703)
文摘Let A be a function with derivatives of order m and D γ A ∈■β (0 〈 β 〈 1, |γ| = m). The authors in the paper prove that if Ω(x, z) ∈ L ∞ (R n ) × L s (S n 1 ) (s ≥ n/(n β)) is homogenous of degree zero and satisfies the mean value zero condition about the variable z, then both the generalized commutator for Marcinkiewicz type integral μ A Ω and its variation μ A Ω are bounded from L p (R n ) to L q (R n ), where 1 〈 p 〈 n/β and 1/q = 1/p β/n. The authors also consider the boundedness of μ A Ω and its variation μ A Ω on Hardy spaces.
基金supported by the National Natural Science Foundation of China (Grant No.10871124)the Innovation Program of Shanghai Municipal Education Commission,China (Grant No.09ZZ99)
文摘On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.
文摘In this paper, we study the boundedness of the fractional integral operator and their commutator on Herz spaecs with two variable exponents . By using the properties of the variable exponents Lebesgue spaces, the boundedness of the fractional integral operator and their commutator generated by Lipschitz function is obtained on those Herz spaces.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Special Fund for Basic Scientific Research of Central Colleges of Chang’an University, China (Grant No. CHD2011JC080)
文摘In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.
基金supported by NSF of China (Grant No. 11471033)NCET of China (Grant No. NCET-11-0574)the Fundamental Research Funds for the Central Universities (FRF-TP-12-006B)
文摘Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^γ on the weighted Morrey spaces.
文摘Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this paper, the boundedness of Tb on weighted Morrey space are obtained when b belongs to the weighted Lipschitz function space and weighted BMO function space, respectively.
基金Dachun Yang was supported by the Croucher Foundation Chinese Visitorships 1999-2000 of Hong Kong and me NNSF(19131080)of China
文摘Let n≥2. In this paper, the author establishes the L2 (Rx)-boundedness of some oscillatory singular integrals with variable rough kernels by means of some estimates on hyper geometric functions and confluent hyper geometric funtions.
文摘In this paper, we study the boundedness of the fractional integral with variable kernel. Under some assumptions, we prove that such kind of operators is bounded from the variable exponent Herz-Morrey spaces to the variable exponent Herz-Morrey spaces.
基金Supported by the NSFC(11001001)Supported by the Natural Science Foundation from the Education Department of Anhui Province(KJ2013A235,KJ2013Z279)
文摘In this paper, we will study the boundedness of the singular integral operator with variable Calder′on-Zygmund kernel on the weighted Morrey spaces Lp,κ(ω) for q′≤ p < ∞and 0 < κ < 1. Furthermore, the boundedness for the commutator with BMO functions is also obtained.
文摘To extend the kinetic formulation of city size distribution introduced in <a href="#ref1">[1]</a>, the non-Maxwellian kinetic modeling is introduced in the present study, in which a <em>variable collision kernel</em> is used in the underlying kinetic equation of Boltzmann type. By resorting to the well-known grazing asymptotic, a kinetic Fokker-Planck counterpart is obtained. The equilibrium of the Fokker-Planck equation belongs to the class of generalized Gamma distributions. Numerical test shows good fit of the generalized Gamma distribution with the city size distribution of China.
基金supported by the National Natural Science Foundation of China(No.11561062)Natural Science Foundation of Gansu Province(21JR1RM337).
文摘In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized weighted Morrey spaces.And the corresponding commutators generated by BMO function are also considered.
基金NSF of China(Grant Nos.10571015 and 10826046)SRFDP of China(Grant No.20050027025)
文摘In this paper the author proves that the commutator of the Marcinkiewicz integral operator with rough variable kernel is bounded from the homogeneous Sobolev space Lγ^2(R^n) to the Lebesgue space L^2(R^n), which is a substantial improvement and extension of some known results.
文摘For b Е Lip(Rn), the CalderSn commutator with variable kernel is defined by[b,T1]f(x)=p.v∫RnΩ(x,x-y)/|x-y|^n+1(b(x))-b(y))f(y)dy In this paper, we establish the L2(Rn) boundedness for [b, T1] with Ω(x, z') ∈L∞(Rn)×Lq(Sn-1)(q〉2(n-1)/n)satisfying certain cancellation conditions.Moreover, the exponent q 〉2(n - 1)/n is optimal. Our main result improves a previous result of Calderon.