期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Unsteady Hydromagnetic Non-Newtonian Nanofluid Flow Past a Porous Stretching Sheet in the Presence of Variable Magnetic Field and Chemical Reaction
1
作者 Kafunda Tuesday Mathew N. Kinyanjui Kang’ethe Giterere 《Journal of Applied Mathematics and Physics》 2023年第9期2545-2567,共23页
The aim of this study is to examine the unsteady hydromagnetic flow of non-Newtonian nanofluid past a stretching sheet in the presence of variable magnetic field and chemical reaction. The system of non-linear partial... The aim of this study is to examine the unsteady hydromagnetic flow of non-Newtonian nanofluid past a stretching sheet in the presence of variable magnetic field and chemical reaction. The system of non-linear partial differential equations governing the flow was solved using finite difference numerical approximation method. The resulting numerical schemes were simulated in MATLAB software. Furthermore, the skin-friction coefficient, Sherwood number, and Nusselt number have been presented in tabular form and discussed. The findings demonstrated that increasing Reynolds number increases velocity profiles while increasing permeability parameter, suction parameter and angle of inclination for the applied magnetic field reduces the velocity profiles of the fluid flow. Temperature of the fluid increases as the angle of inclination, magnetic number, Reynolds number and Eckert number increase but decreases as Prandtl number increases. Induced magnetic field profiles decrease as magnetic Prandtl number and suction parameter increase. Concentration profiles decrease as the chemical reaction parameter and Schmidt number increase but increase as the Soret number increases. The study is significant because fluid flow and heat transfer mechanisms with the variable magnetic considerations play an important role in magnetohydrodynamic generator or dynamo and magnetohydrodynamic pumps, nuclear reactors, vehicle thermal control, heat exchangers, cancer therapy, wound treatment and hyperthermia. 展开更多
关键词 HYDROmagnetic Non-Newtonian NANOFLUID POROUS variable magnetic field Chemical Reaction
下载PDF
Multinuclear MR and MRI study of lithium-ion cells using a variable field magnet and a fixed frequency RF probe
2
作者 Andrés Ramírez Aguilera Florin Marica +4 位作者 Kevin J.Sanders Md Al Raihan C.Adam Dyker Gillian R.Goward Bruce J.Balcom 《Magnetic Resonance Letters》 2024年第1期10-20,共11页
An exploratory multinuclear magnetic resonance(MR)and magnetic resonance imaging(MRI)study was performed on lithium-ion battery cells with ^(7)Li,^(19)F,and ^(1)H measurements.A variable field superconducting magnet w... An exploratory multinuclear magnetic resonance(MR)and magnetic resonance imaging(MRI)study was performed on lithium-ion battery cells with ^(7)Li,^(19)F,and ^(1)H measurements.A variable field superconducting magnet with a fixed frequency parallel-plate radiofrequency(RF)probe was employed in the study.The magnetic field was changed to set the resonance frequency of each nucleus to the fixed RF probe frequency of 33.7 MHz.Two cartridge-like lithium-ion cells,with graphite anodes and LiNi_(0.5)Mn_(0.3)Co_(0.2)O_(2)(NMC)cathodes,were interrogated.One cell was pristine,and one was charged to a cell voltage of 4.2 V.The results presented demonstrate the great potential of the variable field magnet approach in multinuclear measurement of lithium-ion batteries.These methods open the door for developing faster and simpler methods for detecting,quantifying,and interpreting MR and MRI data from lithium-ion and other batteries. 展开更多
关键词 Multinuclear MR/MRI variable field magnet Lithium-ion battery Parallel-plate rf probe
下载PDF
Hydromagnetic Squeezing Nanofluid Flow between Two Vertical Plates in Presence of a Chemical Reaction
3
作者 Benjamin Matur Madit Jackson K. Kwanza Phineas Roy Kiogora 《Journal of Applied Mathematics and Physics》 2024年第1期126-146,共21页
In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the... In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the resulting ordinary differential equations were solved by collocation method. The velocity, temperature, concentration and magnetic induction profiles were determined with help of various flow parameters. The numerical scheme was simulated with aid of MATLAB. The results showed that increasing the squeeze number only boosts velocity and concentration while lowering temperature. Conversely, increasing the Hartmann number, Reynold’s magnetic number, Eckert number and Thermal Grashof number generally increases temperature but decreases both velocity and concentration. Chemical reaction rate and Soret number solely elevate concentration while Schmidt number only reduces it. The results of this study will be useful in the fields of oil and gas industry, plastic processing industries, filtration, food processing, lubrication system in machinery, Microfluidics devices for drug delivery and other related fields of nanotechnology. 展开更多
关键词 HYDROmagnetic Squeezing Flow NANOFLUID variable magnetic field Chemical Reaction
下载PDF
Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms 被引量:2
4
作者 S.I.ABDELSALAM M.M.BHATTI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第5期711-724,共14页
The peristaltic flow of a non-Newtonian nanofluid with swimming oxytactic microorganisms through a space between two infinite coaxial conduits is investigated. A variable magnetic field is applied on the flow. The bio... The peristaltic flow of a non-Newtonian nanofluid with swimming oxytactic microorganisms through a space between two infinite coaxial conduits is investigated. A variable magnetic field is applied on the flow. The bioconvection flow and heat transfer in the porous annulus are formulated, and appropriate transformations are used, leading to the non-dimensionalized ruling partial differential equation model. The model is then solved by using the homotopy perturbation scheme. The effects of the germane parameters on the velocity profile, temperature distribution, concentration distribution, motile microorganism profile, oxytactic profile, pressure rise, and outer and inner tube friction forces for the blood clot and endoscopic effects are analyzed and presented graphically.It is noticed that the pressure rise and friction forces attain smaller values for the endoscopic model than for the blood clot model. The present analysis is believed to aid applications constituting hemodynamic structures playing indispensable roles inside the human body since some blood clotting disorders, e.g., haemophilia, occur when some blood constituents on the artery wall get confined away from the wall joining the circulation system. 展开更多
关键词 oxytactic swimming microorganism swimming variable magnetic field blood clotting endoscopy non-Newtonian fluid
下载PDF
Orthogonal transformation operation theorem of a spatial universal uniform rotating magnetic field and its application in capsule endoscopy 被引量:11
5
作者 ZHANG YongShun YU ZiChun +2 位作者 YANG HuiYuan HUANG YunKui CHEN Jun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第6期854-864,共11页
According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can... According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can be controlled within the tri-axial orthogonal square Helmholtz coils (TOSHC). Nevertheless, three coupling direction angles of the normal vector of the SURMF in the Descartes coordinate system cannot be separately controlled, thus the adjustment of the orientation of the SURMF is difficult and the flexibility of the robotic posture control is restricted. For the dimension reduction and the decoupling of control variables, the orthogonal transformation operation theorem of the SURMF is proposed based on two independent rotation angular variables, which employs azimuth and altitude angles as two variables of the three-phase sine current superposition formula derived by the orthogonal rotation inverse transformation. Then the unique control rules of the orientation and the rotational direction of the SURMF are generalized in each spatial quadrant, thus the scanning of the normal vector of the SURMF along the horizontal or vertical direction can be achieved through changing only one variable, which simplifies the control process of the orientation of the SURMF greatly. To validate its feasibility and maneuverability, experiments were conducted in the animal intestine utilizing the innovative dual hemisphere capsule robot (DHCR) with active and passive modes. It was demonstrated that the posture adjustment and the steering rolling locomotion of the DHCR can be realized through single variable control, thus the orthogonal transformation operation theorem makes the control of the orientation of the SURMF convenient and flexible significantly. This breakthrough will lay a foundation for the human-machine interaction control of the SURMF. 展开更多
关键词 dual hemisphere capsule robot (DHCR) spatial universal rotating magnetic field (SURMF) orthogonal transformation operation variable decoupling
原文传递
Heterogeneous and homogeneous reactive flow of magnetite-water nanofluid over a magnetized moving plate
6
作者 C.S.Sravanthi F.Mabood +1 位作者 S.G.Nabi S.A.Shehzad 《Propulsion and Power Research》 SCIE 2022年第2期265-275,共11页
This model is dedicated to visualizing the nature of magnetite-water nanoliquid induced by a permeable plate having variable magnetic effect,non-linear radiation,heterogeneous and homogeneous chemically reactive spec... This model is dedicated to visualizing the nature of magnetite-water nanoliquid induced by a permeable plate having variable magnetic effect,non-linear radiation,heterogeneous and homogeneous chemically reactive species.The system of momentum,thermal and concentration expressions is formulated and transformed from the partial to ordinary differential systems by using the adequate transforms.This highly non-linear system is solved through RKF(Runge-Kutta-Fehlberg)numerical method.Important parameters such as suction/injection,magnetic,and radiation effects as well as other relevant parameters are investigated.The graphs show that the rise in radiation parameter numerically improves the thermal distribution,implying a faster heat transfer rate.Non-linear radiation has greater effect on temperature than the linear radiation.While the volume concentration effect reveals that the friction factor increase with the enhancement of nanoparticle concentration.It is also observed that,plate velocity decreases the skin-friction but increases the wall heat transfer for both suction and blowing cases.The results indicate that the current research has a strong agreement with the relevant data in a limiting approach. 展开更多
关键词 Homogeneous-heterogeneous reactions Non-linear radiation variable magnetic field NANOFLUID Moving plate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部