The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho...The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.展开更多
The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle.These equations are expressed in terms of flexura...The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle.These equations are expressed in terms of flexural and torsional displacements simultaneously.In this study,the analytical method is proposed.Firstly,two physical parameters are introduced to simplify the analysis.One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements.Based on the relation,the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order ordinary differential equation in terms of the flexural displacement only.When the material and geometric properties of the beam are in arbitrary polynomial forms,the exact solutions with regard to the outof-plane vibrations of non-uniform beams with variable curvature can be obtained by the recurrence formula.In addition,the mode transition mechanism is revealed and the influence of several parameters on the vibration of the non-uniform beam with variable curvature is explored.展开更多
A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate...A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.展开更多
In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, ...In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.展开更多
The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- effi...The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- efficients based on the model of the Euler-Bernoulli beam. Then differential equation with variable coefficients becomes that with constant coefficients by variable substitution. At last, the study obtains the solution of dy- namic equation. The cantilever beam is an object for analysis. When the flexural rigidity at free end is a constant and that at clamped end is varied, the dynamic characteristics are analyzed under several cases. The results dem- onstrate that the natural angular frequency reduces as the fiexural rigidity reduces. When the rigidity of clamped end is higher than that of free end, low-level mode contributes the larger displacement response to the total re- sponse. On the contrary, the contribution of low-level mode is lesser than that of hi^h-level mode.展开更多
An inverse problem of elastica of a variable-arclength beam subjected to a concentrated load is investigated. The beam is fixed at one end, and can slide freely over a hinge support at the other end. The inverse probl...An inverse problem of elastica of a variable-arclength beam subjected to a concentrated load is investigated. The beam is fixed at one end, and can slide freely over a hinge support at the other end. The inverse problem is to determine the value of the load when the deflection of the action point of the load is given. Based on the elasitca equations and the elliptic integrals, a set of nonlinear equations for the inverse problem are derived, and an analytical solution by means of iterations and Quasi-Newton method is presented. From the results, the relationship between the loads and deflections of the loading point is obtained.展开更多
This paper studies the stress and displacement distributions of continuously varying thickness beams with one end clamped and the other end simply supported under static loads. By introducing the unit pulse functions ...This paper studies the stress and displacement distributions of continuously varying thickness beams with one end clamped and the other end simply supported under static loads. By introducing the unit pulse functions and Dirac functions, the clamped edge can be made equivalent to the simply supported one by adding the unknown horizontal reactions. According to the governing equations of the plane stress problem, the general expressions of displacements, which satisfy the governing differefitial equations and the boundary conditions attwo ends of the beam, can be deduced. The unknown coefficients in the general expressions are then determined by using Fourier sinusoidal series expansion along the upper and lower boundaries of the beams and using the condition of zero displacements at the clamped edge. The solution obtained has excellent convergence properties. Comparing the numerical results to those obtained from the commercial software ANSYS, excellent accuracy of the present method is demonstrated.展开更多
The electron optical column for the variable rectangular-shaped beam lithographysystem DJ-2 is described,with emphasis on the analysis of the optical configuration and theshaping deflection compensation.In this column...The electron optical column for the variable rectangular-shaped beam lithographysystem DJ-2 is described,with emphasis on the analysis of the optical configuration and theshaping deflection compensation.In this column the variable spot shaping is performed with aminimum number of lenses by a more reasonable optical scheme.A high-sensitivity electrostaticshaping deflector with sequential parallel-plates is implemented for high-speed spot shaping.With a precise linear and rotational approach,the spot current density,the edge resolution aswell as the position of spot origin remain unchanged when the spot size varies.Experiments showthat the spot current density of over 0.4 A/cm^2 is obtained with a tungsten hairpin cathode,andthe edge resolution is better than 0.2μm within a 2×2 mm^2 field size.展开更多
This paper deals with finite deformation problems of cantilever beam with variable sec- tion under the action of arbitrary transverse loads.By the use of a method of variable replacement, the nonlinear differential eq...This paper deals with finite deformation problems of cantilever beam with variable sec- tion under the action of arbitrary transverse loads.By the use of a method of variable replacement, the nonlinear differential equation with varied coefficient for the problem can be transformed into an equation with variable separable.The exact solution can be obtained by the integration method. Some examples are given in the paper,and the results of these examples show that this exact solution includes the existing solutions in references as special cases.展开更多
In this paper by means of the exact analytic method [1], the general solution fordynamic response of nonhomogeneous beam with variable cross section is obtained un-der arbitrary resonant load and boundary conditions. ...In this paper by means of the exact analytic method [1], the general solution fordynamic response of nonhomogeneous beam with variable cross section is obtained un-der arbitrary resonant load and boundary conditions. The problem is reduced to solvea non-positive differential equation. Generally, it is not solved by variational method.By the present method, the general solution for this problem may be written as an ana-lytic form. Hence, it is convenient for structure optimizing problem. In this paper, itsconvergence is proved. Numerical examples are given at the end of the paper. which in-dicates satisfactory results can be obtained.展开更多
An elastic beam system formulated by partial differential equations with initial and boundary conditions is investigated in this paper. An evolution equation corresponding with the beam system is established in an app...An elastic beam system formulated by partial differential equations with initial and boundary conditions is investigated in this paper. An evolution equation corresponding with the beam system is established in an appropriate Hilbert space. The spectral analysis and semigroup generation of the system operator of the beam system are discussed. Finally, a variable structural control is proposed and a significant result that the solution of the system is exponentially stable under a variable structural control with some appropriate conditions is obtained.展开更多
To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is dev...To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.展开更多
The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients....The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients. By decomposing the variable flexural stiffness and mass per unit length into reference invariant and variant parts, the perturbation theory is introduced to obtain an approximate analytical formula of the natural frequencies of the non-uniform AFG beams with different boundary conditions.Furthermore, assuming polynomial distributions of Young's modulus and the mass density, the numerical results of the AFG beams with various taper ratios are obtained and compared with the published literature results. The discussion results illustrate that the proposed method yields an effective estimate of the first three order natural frequencies for the AFG tapered beams. However, the errors increase with the increase in the mode orders especially for the cases with variable heights. In brief, the asymptotic development method is verified to be simple and efficient to analytically study the free vibration of non-uniform AFG beams, and it could be used to analyze any tapered beams with an arbitrary varying cross width.展开更多
We consider the identification problem of coefficients for vibrating systems described by a Euler-Bernoulli beam eq~. ation Or a string equation, with one end clamped and with an input exerted on the other end. For th...We consider the identification problem of coefficients for vibrating systems described by a Euler-Bernoulli beam eq~. ation Or a string equation, with one end clamped and with an input exerted on the other end. For the beam equation, the observations are the velocity and the angle velocity at the free end, while for the string equation, the observation is the velocity at the free end. In the framework of well-posed linear system theory, we show that both the density and the flexural rigidity of the beam, and the tension of the string, can be uniquely determined by the observations for all positive times. Moreover, a general constructive method is developed to show that the mass density and the elastic modulus of the string are not determined by the observation.展开更多
In order to simulate the coupling vibration of a vehicle or train moves on a multi-span continuous bridge with non-uniform cross sections, a moving mass model is used according to the Finite Element Method, the effect...In order to simulate the coupling vibration of a vehicle or train moves on a multi-span continuous bridge with non-uniform cross sections, a moving mass model is used according to the Finite Element Method, the effect of the inertial force, Coriolis force and centrifugal force are considered by means of the additive matrices. For a non-uniform rectangular section beam with both linear and parabolic variable heights in a plane, the stiffness and mass matrices of the beam elements are presented. For a non-uniform box girder, Romberg numerical integral scheme is adopted, each coefficient of the stiffness matrix is obtained by means of a normal numerical computation. By applying these elements to calculate the non-uniform beam, the computational accuracy and efficiency are improved. The finite element method program is worked out and an entire dynamic response process of the beam with non-uniform cross sections subjected to a moving mass is simulated numerically, the results are compared to those previously published for some simple examples. For some complex multi-span bridges subjected to some moving vehicles with changeable velocity and friction, the computational results, which can be regarded as a reference for engineering design and scientific research, are also given simultaneously.展开更多
The millimeter wave(mm Wave)is a potential solution for high data rate communication due to its availability of large bandwidth.However,it is challenging to perform beam tracking in vehicular mm Wave communication sys...The millimeter wave(mm Wave)is a potential solution for high data rate communication due to its availability of large bandwidth.However,it is challenging to perform beam tracking in vehicular mm Wave communication systems due to high mobility and narrow beams.In this paper,an adaptive beam tracking algorithm is proposed to improve the network throughput performance while reducing the training signal overhead.In particular,based on the mobility prediction at base station(BS),a novel frame structure with dynamic bundled timeslot is designed.Moreover,an actor-critic reinforcement learning based algorithm is proposed to obtain the joint optimization of both beam width and the number of bundled timeslots,which makes the beam tracking adapt to the changing environment.Simulation results demonstrate that,compared with the traditional full scan and Kalman filter based beam tracking algorithms,our proposed algorithm can improve the time-averaged throughput by 11.34%and 24.86%respectively.With the newly designed frame structure,it also outperforms beam tracking with conventional frame structure,especially in scenarios with large range of vehicle speeds.展开更多
Free and steady state forced transverse vibrations of non-uniform beams are investigated with a proposed method, leading to a series solution. The obtained series is verified to be convergent and linearly independent ...Free and steady state forced transverse vibrations of non-uniform beams are investigated with a proposed method, leading to a series solution. The obtained series is verified to be convergent and linearly independent in a convergence test and by the non-zero value of the corresponding Wronski determinant, respectively. The obtained solution is rigorous, which can be reduced to a classical solution for uniform beams. The proposed method can deal with arbitrary non-uniform Euler-Bernoulli beams in principle, but the methods in terms of special functions or elementary functions can only work in some special cases.展开更多
Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful...Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful heavy-ion beams. Ions in HIB impinge on the pellet surface and deposit their energy in a relatively deep and wide area. Therefore, the non-uniformity of HIB irradiation should be evaluated in the volume of the deposition area in the absorber layer. By using the OK1 code with some corrections, the non-uniformity of heavy-ion beam irradiation for the different ion beams on two kinds of targets were evaluated in 12-beam, 20-beam, 60-beam and 120-beam irradiation schemes. The root-mean-square (RMS) non-uniformity value becomes aRMS = 8.39% in an aluminum mono-layer pellet structure and aRMS = 6.53% in a lead-aluminum layer target for the 12-uranium-beam system. The RMS non-uniformity for the lead-aluminum layer target was lower than that for the mono-layer target. The RMS and peak-to-valley (PTV) non-uniformities are reduced with the increase in beam number, and low at the Bragg peak layer.展开更多
The non-uniform beam components are commonly used in engineering,while the method to analyze such component is not too satisfactory yet. A new non-uniform beam element with high precision was developed based on the no...The non-uniform beam components are commonly used in engineering,while the method to analyze such component is not too satisfactory yet. A new non-uniform beam element with high precision was developed based on the non-linear analysis and the static condensation. Based on the interpolation theory, the displacement fields of the three-node non-uniform Euler-Bernoulli beam element were constructed at first: the quintic Hermite interpolation polynomial was used for the lateral displacement field and the quadratic Lagrange interpolation polynomial for the axial displacement field. Then,based on the basic assumptions of non-uniform Euler-Bernoulli beam whose section properties were continuously varying along its centroidal axis, the linear and geometric stiffness matrices of the three-node non-uniform beam element were derived according to the nonlinear finite element theory. Finally,the degrees of freedom ( DOFs) of the middle node of the element were eliminated using the static condensation method, and a new two-node non-uniform beam element including axial-force effect was obtained. The results indicate that each bar needs to be meshed with only one element could get a fairly accurate solution when it is applied to the stability analyses.展开更多
In this paper, the step reduction method is discussed, which was advanced by Prof. Yeh Kai-yuan for calculating a non-uniform beam with various sections. The following result is proved. The approximate solution by thi...In this paper, the step reduction method is discussed, which was advanced by Prof. Yeh Kai-yuan for calculating a non-uniform beam with various sections. The following result is proved. The approximate solution by this method approaches the true solution if the number of the steps approaches the infinity. However, the measure of the error between the limit solution and the ture solution is not in the pure mathematics sense but in the mechanics sense.展开更多
文摘The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.
文摘The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle.These equations are expressed in terms of flexural and torsional displacements simultaneously.In this study,the analytical method is proposed.Firstly,two physical parameters are introduced to simplify the analysis.One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements.Based on the relation,the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order ordinary differential equation in terms of the flexural displacement only.When the material and geometric properties of the beam are in arbitrary polynomial forms,the exact solutions with regard to the outof-plane vibrations of non-uniform beams with variable curvature can be obtained by the recurrence formula.In addition,the mode transition mechanism is revealed and the influence of several parameters on the vibration of the non-uniform beam with variable curvature is explored.
文摘A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.
基金Sponsored by the Subsidization Plan for Outstanding Young Teacher of Ministry of Education
文摘In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.
基金National Natural Science Foundation of China(No.51178175)
文摘The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- efficients based on the model of the Euler-Bernoulli beam. Then differential equation with variable coefficients becomes that with constant coefficients by variable substitution. At last, the study obtains the solution of dy- namic equation. The cantilever beam is an object for analysis. When the flexural rigidity at free end is a constant and that at clamped end is varied, the dynamic characteristics are analyzed under several cases. The results dem- onstrate that the natural angular frequency reduces as the fiexural rigidity reduces. When the rigidity of clamped end is higher than that of free end, low-level mode contributes the larger displacement response to the total re- sponse. On the contrary, the contribution of low-level mode is lesser than that of hi^h-level mode.
基金The project supported by the National Natural Science Foundation of China(10272011)
文摘An inverse problem of elastica of a variable-arclength beam subjected to a concentrated load is investigated. The beam is fixed at one end, and can slide freely over a hinge support at the other end. The inverse problem is to determine the value of the load when the deflection of the action point of the load is given. Based on the elasitca equations and the elliptic integrals, a set of nonlinear equations for the inverse problem are derived, and an analytical solution by means of iterations and Quasi-Newton method is presented. From the results, the relationship between the loads and deflections of the loading point is obtained.
文摘This paper studies the stress and displacement distributions of continuously varying thickness beams with one end clamped and the other end simply supported under static loads. By introducing the unit pulse functions and Dirac functions, the clamped edge can be made equivalent to the simply supported one by adding the unknown horizontal reactions. According to the governing equations of the plane stress problem, the general expressions of displacements, which satisfy the governing differefitial equations and the boundary conditions attwo ends of the beam, can be deduced. The unknown coefficients in the general expressions are then determined by using Fourier sinusoidal series expansion along the upper and lower boundaries of the beams and using the condition of zero displacements at the clamped edge. The solution obtained has excellent convergence properties. Comparing the numerical results to those obtained from the commercial software ANSYS, excellent accuracy of the present method is demonstrated.
文摘The electron optical column for the variable rectangular-shaped beam lithographysystem DJ-2 is described,with emphasis on the analysis of the optical configuration and theshaping deflection compensation.In this column the variable spot shaping is performed with aminimum number of lenses by a more reasonable optical scheme.A high-sensitivity electrostaticshaping deflector with sequential parallel-plates is implemented for high-speed spot shaping.With a precise linear and rotational approach,the spot current density,the edge resolution aswell as the position of spot origin remain unchanged when the spot size varies.Experiments showthat the spot current density of over 0.4 A/cm^2 is obtained with a tungsten hairpin cathode,andthe edge resolution is better than 0.2μm within a 2×2 mm^2 field size.
基金Projects Supported by the Science Foundation of the Chinese Academy of Sciences.
文摘This paper deals with finite deformation problems of cantilever beam with variable sec- tion under the action of arbitrary transverse loads.By the use of a method of variable replacement, the nonlinear differential equation with varied coefficient for the problem can be transformed into an equation with variable separable.The exact solution can be obtained by the integration method. Some examples are given in the paper,and the results of these examples show that this exact solution includes the existing solutions in references as special cases.
文摘In this paper by means of the exact analytic method [1], the general solution fordynamic response of nonhomogeneous beam with variable cross section is obtained un-der arbitrary resonant load and boundary conditions. The problem is reduced to solvea non-positive differential equation. Generally, it is not solved by variational method.By the present method, the general solution for this problem may be written as an ana-lytic form. Hence, it is convenient for structure optimizing problem. In this paper, itsconvergence is proved. Numerical examples are given at the end of the paper. which in-dicates satisfactory results can be obtained.
文摘An elastic beam system formulated by partial differential equations with initial and boundary conditions is investigated in this paper. An evolution equation corresponding with the beam system is established in an appropriate Hilbert space. The spectral analysis and semigroup generation of the system operator of the beam system are discussed. Finally, a variable structural control is proposed and a significant result that the solution of the system is exponentially stable under a variable structural control with some appropriate conditions is obtained.
基金Supported by the National Natural Science Foundation of China(10902051)the Natural Science Foundation of Jiangsu Province(BK2008046)~~
文摘To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.
基金Project supported by the National Natural Science Foundation of China(No.11672008)
文摘The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients. By decomposing the variable flexural stiffness and mass per unit length into reference invariant and variant parts, the perturbation theory is introduced to obtain an approximate analytical formula of the natural frequencies of the non-uniform AFG beams with different boundary conditions.Furthermore, assuming polynomial distributions of Young's modulus and the mass density, the numerical results of the AFG beams with various taper ratios are obtained and compared with the published literature results. The discussion results illustrate that the proposed method yields an effective estimate of the first three order natural frequencies for the AFG tapered beams. However, the errors increase with the increase in the mode orders especially for the cases with variable heights. In brief, the asymptotic development method is verified to be simple and efficient to analytically study the free vibration of non-uniform AFG beams, and it could be used to analyze any tapered beams with an arbitrary varying cross width.
基金the National Natural Science Foundation of China (No.K411331528)
文摘We consider the identification problem of coefficients for vibrating systems described by a Euler-Bernoulli beam eq~. ation Or a string equation, with one end clamped and with an input exerted on the other end. For the beam equation, the observations are the velocity and the angle velocity at the free end, while for the string equation, the observation is the velocity at the free end. In the framework of well-posed linear system theory, we show that both the density and the flexural rigidity of the beam, and the tension of the string, can be uniquely determined by the observations for all positive times. Moreover, a general constructive method is developed to show that the mass density and the elastic modulus of the string are not determined by the observation.
文摘In order to simulate the coupling vibration of a vehicle or train moves on a multi-span continuous bridge with non-uniform cross sections, a moving mass model is used according to the Finite Element Method, the effect of the inertial force, Coriolis force and centrifugal force are considered by means of the additive matrices. For a non-uniform rectangular section beam with both linear and parabolic variable heights in a plane, the stiffness and mass matrices of the beam elements are presented. For a non-uniform box girder, Romberg numerical integral scheme is adopted, each coefficient of the stiffness matrix is obtained by means of a normal numerical computation. By applying these elements to calculate the non-uniform beam, the computational accuracy and efficiency are improved. The finite element method program is worked out and an entire dynamic response process of the beam with non-uniform cross sections subjected to a moving mass is simulated numerically, the results are compared to those previously published for some simple examples. For some complex multi-span bridges subjected to some moving vehicles with changeable velocity and friction, the computational results, which can be regarded as a reference for engineering design and scientific research, are also given simultaneously.
基金supported by the National Key R&D Program of China(2020YFB1807204)Beijing Natural Science Foundation(L212003)。
文摘The millimeter wave(mm Wave)is a potential solution for high data rate communication due to its availability of large bandwidth.However,it is challenging to perform beam tracking in vehicular mm Wave communication systems due to high mobility and narrow beams.In this paper,an adaptive beam tracking algorithm is proposed to improve the network throughput performance while reducing the training signal overhead.In particular,based on the mobility prediction at base station(BS),a novel frame structure with dynamic bundled timeslot is designed.Moreover,an actor-critic reinforcement learning based algorithm is proposed to obtain the joint optimization of both beam width and the number of bundled timeslots,which makes the beam tracking adapt to the changing environment.Simulation results demonstrate that,compared with the traditional full scan and Kalman filter based beam tracking algorithms,our proposed algorithm can improve the time-averaged throughput by 11.34%and 24.86%respectively.With the newly designed frame structure,it also outperforms beam tracking with conventional frame structure,especially in scenarios with large range of vehicle speeds.
基金Project supported by the National Natural Science Foundation of China(Nos.11072157,11272219,11227201,and 10932006)the National Basic Research Program of China(No.2012CB723301)the Training Program for Leading Talent in University Innovative Research Team in Hebei Province(No.LJRC006)
文摘Free and steady state forced transverse vibrations of non-uniform beams are investigated with a proposed method, leading to a series solution. The obtained series is verified to be convergent and linearly independent in a convergence test and by the non-zero value of the corresponding Wronski determinant, respectively. The obtained solution is rigorous, which can be reduced to a classical solution for uniform beams. The proposed method can deal with arbitrary non-uniform Euler-Bernoulli beams in principle, but the methods in terms of special functions or elementary functions can only work in some special cases.
文摘Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful heavy-ion beams. Ions in HIB impinge on the pellet surface and deposit their energy in a relatively deep and wide area. Therefore, the non-uniformity of HIB irradiation should be evaluated in the volume of the deposition area in the absorber layer. By using the OK1 code with some corrections, the non-uniformity of heavy-ion beam irradiation for the different ion beams on two kinds of targets were evaluated in 12-beam, 20-beam, 60-beam and 120-beam irradiation schemes. The root-mean-square (RMS) non-uniformity value becomes aRMS = 8.39% in an aluminum mono-layer pellet structure and aRMS = 6.53% in a lead-aluminum layer target for the 12-uranium-beam system. The RMS non-uniformity for the lead-aluminum layer target was lower than that for the mono-layer target. The RMS and peak-to-valley (PTV) non-uniformities are reduced with the increase in beam number, and low at the Bragg peak layer.
文摘The non-uniform beam components are commonly used in engineering,while the method to analyze such component is not too satisfactory yet. A new non-uniform beam element with high precision was developed based on the non-linear analysis and the static condensation. Based on the interpolation theory, the displacement fields of the three-node non-uniform Euler-Bernoulli beam element were constructed at first: the quintic Hermite interpolation polynomial was used for the lateral displacement field and the quadratic Lagrange interpolation polynomial for the axial displacement field. Then,based on the basic assumptions of non-uniform Euler-Bernoulli beam whose section properties were continuously varying along its centroidal axis, the linear and geometric stiffness matrices of the three-node non-uniform beam element were derived according to the nonlinear finite element theory. Finally,the degrees of freedom ( DOFs) of the middle node of the element were eliminated using the static condensation method, and a new two-node non-uniform beam element including axial-force effect was obtained. The results indicate that each bar needs to be meshed with only one element could get a fairly accurate solution when it is applied to the stability analyses.
文摘In this paper, the step reduction method is discussed, which was advanced by Prof. Yeh Kai-yuan for calculating a non-uniform beam with various sections. The following result is proved. The approximate solution by this method approaches the true solution if the number of the steps approaches the infinity. However, the measure of the error between the limit solution and the ture solution is not in the pure mathematics sense but in the mechanics sense.