期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Theoretical and experimental investigations on an X-shaped vibration isolator with active controlled variable stiffness
1
作者 Zeyu CHAI J.T.HAN +3 位作者 Xuyuan SONG Jian ZANG Yewei ZHANG Zhen ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1371-1386,共16页
A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under var... A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters. 展开更多
关键词 bionic vibration isolation X-shaped structure variable stiffness structure nonlinear dynamics prototype experiment
下载PDF
Numerical Study of the Vibrations of Beams with Variable Stiffness under Impulsive or Harmonic Loading
2
作者 Moussa Sali Fabien Kenmogne +1 位作者 Jean Bertin Nkibeu Abdou Njifenjou 《World Journal of Engineering and Technology》 2024年第2期401-425,共25页
The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho... The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%. 展开更多
关键词 Successive Approximations Method Direct Integration Differential Equations Beams of variable stiffness Quadratic Parabola Impulse and Harmonic Loads
下载PDF
Variable stiffness tuned particle dampers for vibration control of cantilever boring bars
3
作者 Xiangying GUO Yunan ZHU +2 位作者 Zhong LUO Dongxing CAO Jihou YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2163-2186,共24页
This research proposes a novel type of variable stiffness tuned particle damper(TPD)for reducing vibrations in boring bars.The TPD integrates the developments of particle damping and dynamical vibration absorber,whose... This research proposes a novel type of variable stiffness tuned particle damper(TPD)for reducing vibrations in boring bars.The TPD integrates the developments of particle damping and dynamical vibration absorber,whose frequency tuning principle is established through an equivalent theoretical model.Based on the multiphase flow theory of gas-solid,it is effective to obtain the equivalent damping and stiffness of the particle damping.The dynamic equations of the coupled system,consisting of a boring bar with the TPD,are built by Hamilton’s principle.The vibration suppression of the TPD is assessed by calculating the amplitude responses of the boring bar both with and without the TPD by the Newmark-beta algorithm.Moreover,an improvement is proposed to the existing gas-solid flow theory,and a comparative analysis of introducing the stiffness term on the damping effect is presented.The parameters of the TPD are optimized by the genetic algorithm,and the results indicate that the optimized TPD effectively reduces the peak response of the boring bar system. 展开更多
关键词 PARTICLE tuned particle damper(TPD) variable stiffness vibration control
下载PDF
A novel semi-active TMD with folding variable stiffness spring 被引量:2
4
作者 M.H.Rafi eipour A.K.Ghorbani-Tanha +1 位作者 M.Rahimian R.Mohammadi-Ghazi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第3期509-518,共10页
An innovative variable stiffness device is proposed and investigated based on numerical simulations. The device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampe... An innovative variable stiffness device is proposed and investigated based on numerical simulations. The device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampers (TMDs) with adaptive stiffness. An important characteristic of FVSS is its capability to change the stiffness between lower and upper bounds through a small change of distance between its supports. This special feature results in lower time-lag errors and readjustment in shorter time intervals. The governing equations of the device are derived and simplified for a symmetrical FVSS with similar elements. This device is then used to control a single-degree-of-freedom (SDOF) structure as well as a multi-degree-of-freedom (MDOF) structure via a semi-active TMD. Numerical simulations are conducted to compare several control cases for these structures. To make it more realistic, a real direct current motor with its own limitations is simulated in addition to an ideal control case with no limitations and both the results are compared. It is shown that the proposed device can be effectively used to suppress undesirable vibrations of a structure and considerably improves the performance of the controller compared to a passive device. 展开更多
关键词 semi-active tuned mass damper variable stiffness folding variable stiffness spring
下载PDF
Semiactive variable stiffness control for parametric vibration of cables 被引量:1
5
作者 李惠 陈文礼 欧进萍 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第2期215-222,共8页
In this paper, a semiactive variable stiffness (SVS) device is used to decrease cable oscillations caused by parametric excitation, and the equation of motion of the parametric vibration of the cable with this SVS d... In this paper, a semiactive variable stiffness (SVS) device is used to decrease cable oscillations caused by parametric excitation, and the equation of motion of the parametric vibration of the cable with this SVS device is presented. The ON/OFF control algorithm is used to operate the SVS control device. The vibration response of the cable with the SVS device is numerically studied for a variety of additional stiffness combinations in both the frequency and time domains and for both parametric and classical resonance vibration conditions. The numerical studies further consider the cable sag effect. From the numerical results, it is shown that the SVS device effectively suppresses the cable resonance vibration response, and as the stiffness of the device increases, the device achieves greater suppression of vibration. Moreover, it was shown that the SVS device increases the critical axial displacement of the excitation under cable parametric vibration conditions. 展开更多
关键词 CABLE semiactive control semiactive variable stiffness control parametric vibration RESONANCE NONLINEARITY
下载PDF
Variable Stiffness Identification and Configuration Optimization of Industrial Robots for Machining Tasks 被引量:1
6
作者 Jiachen Jiao Wei Tian +5 位作者 Lin Zhang Bo Li Junshan Hu Yufei Li Dawei Li Jianlong Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期275-290,共16页
Industrial robots are increasingly being used in machining tasks because of their high flexibility and intelligence.However,the low structural stiffness of a robot significantly affects its positional accuracy and the... Industrial robots are increasingly being used in machining tasks because of their high flexibility and intelligence.However,the low structural stiffness of a robot significantly affects its positional accuracy and the machining quality of its operation equipment.Studying robot stiffness characteristics and optimization methods is an effective method of improving the stiffness performance of a robot.Accordingly,aiming at the poor accuracy of stiffness modeling caused by approximating the stiffness of each joint as a constant,a variable stiffness identification method is proposed based on space gridding.Subsequently,a task-oriented axial stiffness evaluation index is proposed to quantitatively assess the stiffness performance in the machining direction.In addition,by analyzing the redundant kinematic characteristics of the robot machining system,a configuration optimization method is further developed to maximize the index.For numerous points or trajectory-processing tasks,a configuration smoothing strategy is proposed to rapidly acquire optimized configurations.Finally,experiments on a KR500 robot were conducted to verify the feasibility and validity of the proposed stiffness identification and configuration optimization methods. 展开更多
关键词 Industrial robot Space gridding variable stiffness identification Configuration optimization Smooth processing
下载PDF
Suppression of thermal postbuckling and nonlinear panel flutter motions of variable stiffness composite laminates using piezoelectric actuators 被引量:1
7
作者 TAO Ji-xiao YI Sheng-hui +1 位作者 DENG Ya-jie HE Xiao-qiao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3757-3777,共21页
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu... Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches. 展开更多
关键词 active control finite element method linear quadratic regulator algorithm nonlinear flutter thermal postbuckling variable stiffness composite laminates
下载PDF
Theoretical and experimental research on a new system of semi-active structural control with variable stiffness and damping 被引量:1
8
作者 周福霖 谭平 +1 位作者 阎维明 魏陆顺 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第1期130-135,共6页
In this paper,a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested.This new system amplifies the structural displacement to dissipate more energy,and in turn,ef... In this paper,a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested.This new system amplifies the structural displacement to dissipate more energy,and in turn,effectively reduces the structural response in the case of relatively small story drifts,which occur during earthquakes.A predictive instantaneous optimal control algorithm is established for a SDOF structure equipped with an AVSD system Comparative shaking table tests of a 1/4 scale single story structural model with a full scale control device have been conducted.From the experimental and analytical results,it is shown that when compared to structures without control or with the active variable stiffness control alone, the suggested system exhibits higher efficiency in controlling the structural response,requires less energy input,operates with higher reliability,and can be manufactured at a lower cost and used in a wider range of engineering applications. 展开更多
关键词 semi-active structural control variable stiffness and damping control device control algorithm shaking table test
下载PDF
Analytical solution of rectangular plate with in-plane variable stiffness 被引量:1
9
作者 于天崇 聂国隽 +1 位作者 仲政 褚福运 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第4期395-404,共10页
The bending problem of a thin rectangular plate with in-plane variable stiffness is studied. The basic equation is formulated for the two-opposite-edge simply supported rectangular plate under the distributed loads. T... The bending problem of a thin rectangular plate with in-plane variable stiffness is studied. The basic equation is formulated for the two-opposite-edge simply supported rectangular plate under the distributed loads. The formulation is based on the assumption that the flexural rigidity of the plate varies in the plane following a power form, and Poisson's ratio is constant. A fourth-order partial differential equation with variable coefficients is derived by assuming a Levy-type form for the transverse displacement. The governing equation can be transformed into a Whittaker equation, and an analytical solution is obtained for a thin rectangular plate subjected to the distributed loads. The validity of the present solution is shown by comparing the present results with those of the classical solution. The influence of in-plane variable stiffness on the deflection and bending moment is studied by numerical examples. The analytical solution presented here is useful in the design of rectangular plates with in-plane variable stiffness. 展开更多
关键词 in-plane variable stiffness power form Levy-type solution rectangular plate
下载PDF
An XBi-CFAO Method for the Optimization of Multi-Layered Variable Stiffness Composites Using Isogeometric Analysis 被引量:1
10
作者 Chao Mei Qifu Wang +1 位作者 Chen Yu Zhaohui Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期627-659,共33页
This paper presents an effective fiber angle optimization method for two and multi-layered variable stiffness composites.A gradient-based fiber angle optimization method is developed based on isogeometric analysis(IGA... This paper presents an effective fiber angle optimization method for two and multi-layered variable stiffness composites.A gradient-based fiber angle optimization method is developed based on isogeometric analysis(IGA).Firstly,the element densities and fiber angles for two and multi-layered composites are synchronously optimized using an extended Bi-layered continuous fiber angle optimization method(XBi-CFAO).The densities and fiber angles in the base layer are attached to the control points.The structure response and sensitivity analysis are accomplished using the non-uniform rational B-spline(NURBS)based IGA.By the benefit of the B-spline space,this method is free from checkerboards,and no additional filtering is needed to smooth the sensitivity numbers.Then the curved fiber paths are generated using the streamline method and the discontinuous fiber paths are smoothed using a partitioned selection process.The proposed method in the paper can alleviate the phenomenon of fiber discontinuity,enhance information retention for the optimized fiber angles of the singular points and save calculating resources effectively. 展开更多
关键词 Isogeometric analysis fiber angle optimization variable stiffness laminates fiber path optimization topology optimization
下载PDF
IGA Based Bi-Layer Fiber Angle Optimization Method for Variable Stiffness Composites 被引量:1
11
作者 Chao Mei Qifu Wang +1 位作者 Chen Yu Zhaohui Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第7期179-202,共24页
This paper presents a topology optimization method for variable stiffness composite panels with varying fiber orientation and curvilinear fiber path.Non-uniform rational B-Splines(NURBS)based Isogeometric analysis(IGA... This paper presents a topology optimization method for variable stiffness composite panels with varying fiber orientation and curvilinear fiber path.Non-uniform rational B-Splines(NURBS)based Isogeometric analysis(IGA)is utilized for the numerical computation of the general minimum compliance problem.The sensitivity analysis of the structure compliance function for the density and bi-layer orientation is conducted.The bi-layer fiber paths in the design domain are generated using streamline method and updated by divided pieces reselection method after the optimization process.Several common examples are tested to demonstrate the effectiveness of the method.The results show that the proposed method can generate more manufacturable fiber paths than some typical topology optimization methods. 展开更多
关键词 Isogeometric analysis fiber angle optimization variable stiffness
下载PDF
Approximate analysis method for displacement responses of structures with active variable stiffness systems 被引量:1
12
作者 吴波 刘汾涛 魏德敏 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第2期261-269,共9页
The performance of structures with active variable stiffness (AVS) systems exhibits strong nonlinearity due to the variety with time of the stiffness of each storey unit,in which the AVS system is installed.Hence,the ... The performance of structures with active variable stiffness (AVS) systems exhibits strong nonlinearity due to the variety with time of the stiffness of each storey unit,in which the AVS system is installed.Hence,the classical dynamic analysis method for linear structures,such as the mode-superposition method,is not applicable to structures with AVS systems.In this paper,an approximate analysis method is proposed for displacement responses of structures with AVS systems.Firstly,an equivalent relationship between single-degree-of-freedom (SDOF) structures equipped with AVS systems and so-called fictitious linear structures is established.Then,an approximate mode-superposition (AMS) method is presented for multi-degree-of-freedom (MDOF) structures equipped with AVS systems.The accuracy of this method is investigated through extensive parametrical study using different types of earthquake excitations,and some modification is made to the method. Numerical calculation results indicate that the modified AMS method is effective for estimating the maximum displacements relative to the ground and the maximum interstorey drifts of MDOF structures equipped with AVS systems. 展开更多
关键词 active variable stiffness(AVS)systems approximate mode-superposition(AMS)method displacement response
下载PDF
Research of Elastic and Elastic-Plastic Deformation on Bending Problems of Variable Stiffness Beams
13
作者 Lei Huang Zengxuan Hou +1 位作者 Dijing Zhang Youhang Zhao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2021年第1期42-52,共11页
A novel variable stiffness model was proposed for analyzing elastic-plastic bending problems with arbitrary variable stiffness in detail.First,it was assumed that the material of a rectangular beam is an ideal isotrop... A novel variable stiffness model was proposed for analyzing elastic-plastic bending problems with arbitrary variable stiffness in detail.First,it was assumed that the material of a rectangular beam is an ideal isotropic elastic-plastic material,whose elastic modulus,yield strength,and section height are functions of the axial coordinates of the beam respectively.Considering the effect of shear on the deformation of the beam,the elastic and elastic-plastic bending problems of the axially variable stiffness beam were studied.Then,the analytical solutions of the elastic and elastic-plastic deformation of the beam were derived when the cross-section height and the elastic modulus of the material were varied by special function along the length of the beam respectively.The elastic and elastic-plastic analysis of the variable stiffness beam was carried out using Differential Quadrature Method(DQM)when the bending stiffness varied arbitrarily.The influence of the axial variation of the bending stiffness on the elastic and elastic-plastic deformation of the beam was analyzed by numerical simulation,DQM,and finite element method(FEM).Simulation results verified the practicability of the proposed mechanical model,and the comparison between the results of the solutions of DQM and FEM showed that DQM is accurate and effective in elastic and elastic-plastic analysis of variable stiffness beams. 展开更多
关键词 ELASTIC-PLASTIC bending problems variable stiffness CROSS-SECTION DQM plastic deformation
下载PDF
Analysis on resonant shake table with novel variable stiffness mechanism
14
作者 Li Gang Wang Yongwei +3 位作者 Zhou Xinghua Sun Xiao Zhang Jianhai Chen Chen 《Journal of Southeast University(English Edition)》 EI CAS 2022年第3期252-259,共8页
To improve the efficiency and amplify the exciting force of a shake table,a novel variable stiffness mechanism(VSM)constructed by four leaf spring-lever combinations(LSLCs)was designed.Three VSMs were installed in par... To improve the efficiency and amplify the exciting force of a shake table,a novel variable stiffness mechanism(VSM)constructed by four leaf spring-lever combinations(LSLCs)was designed.Three VSMs were installed in parallel on the traditional hydraulic shake table to constitute a resonant shake table(RST).The static model of the VSM and the dynamic model of the RST were constructed by considering the large deflection of leaf springs and the geometrical nonlinearity of L-shaped levers.The variable stiffness property of LSLCs was analyzed and verified through static experiments.The simulation and vibration experiments on the dynamic properties of the RST prototype were conducted.The results show that compared with traditional shake tables,the RST consumes lower exciting force in a specified frequency bandwidth when outputting the same displacement of vibration.Under a harmonic vibrational excitation,the RST is effective for vibration enhancement using broadband frequency resonance and can save energy to some extent.The broadband resonance technology exhibits considerable potential in practical engineering applications. 展开更多
关键词 variable stiffness mechanism RESONANCE shake table leaf spring-lever mechanism stiffness soften system
下载PDF
Variable stiffness control algorithm for high-rising buildings of closely spaced frequencies based on wavelet transforms
15
作者 滕军 鲁志雄 闫安志 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期600-606,共7页
To establish the algorithm of SAT-TMD system with the wavelet transform(WT),the modal mass participation ratio is proposed to distinguish if the high-rising structure has the characteristic of closely distributed freq... To establish the algorithm of SAT-TMD system with the wavelet transform(WT),the modal mass participation ratio is proposed to distinguish if the high-rising structure has the characteristic of closely distributed frequencies.A time varying analytical model of high-rising structure such as TV-tower with the SAT-TMD is developed.The proposed new idea is to use WT to identify the dominant frequency of structural response in a segment time,and track its variation as a function of time to retune the SAT-TMD.The effectiveness of SAT-TMD is investigated and it is more robust to change in building stiffness and damping than that of the TMD with a fixed frequency corresponding to a fixed mode frequency of the building.It is proved that SAT-TMD is particularly effective in reducing the response even when the building stiffness is changed by ±15%;whereas the TMD loses its effectiveness under such building stiffness variations. 展开更多
关键词 variable stiffness control semi-active tunable TMD(SAT-TMD) wavelet transforms closely spaced frequencies modal mass participation ratio
下载PDF
Variable stiffness methods of flexible robots for minimally invasive surgery:A review 被引量:1
16
作者 Botao Lin Shuang Song Jiaole Wang 《Biomimetic Intelligence & Robotics》 EI 2024年第3期3-14,共12页
With high flexibility and slim body,flexible robots have been widely used in minimally invasive surgery because they can safely reach the lesion deep inside the human body through small incisions or natural orifices.H... With high flexibility and slim body,flexible robots have been widely used in minimally invasive surgery because they can safely reach the lesion deep inside the human body through small incisions or natural orifices.However,high stiffness of robot body is also required for transferring force and maintaining the motion accuracy.To meet these two contradictory requirements,various methods have been implemented to enable adjustable stiffness for flexible surgical robots.In this review,we first summarize the anatomic constraints of common natural tracts of human body to provide a guidance for the design of variable stiffness flexible robots.And then,the variable stiffness methods have been categorized based on their basic principles of varying the stiffness.In the end,two variable stiffness methods with great potential and the moving strategy of variable stiffness flexible robots are discussed. 展开更多
关键词 Minimally invasive surgery Continuum robot variable stiffness
原文传递
Experimental and numerical studies on buckling and post-buckling behavior of T-stiffened variable stiffness panels
17
作者 Yan HUANG Yahui ZHANG +3 位作者 Bin KONG Jiefei GU Zhe WANG Puhui CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期459-470,共12页
Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness s... Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness structures,including design,manufacture,experiment,and simulation.Based on the minimum curvature radius and process schemes,two types of T-stiffened panels were designed and manufactured.Uniaxial compression tests have been carried out and the results indicate that the buckling load of variable stiffness specimens is increased by 26.0%,while the failure load is decreased by 19.6%.The influence mechanism of variable stiffness design on the buckling and failure behavior of T-stiffened panels was explicated by numerical analysis.The primary reason for the reduced strength is the significantly increased load bearing ratio of stiffeners.As experimental investigations of stiffened variable stiffness structures are very rare,this study can be considered a reference for future work. 展开更多
关键词 variable stiffness composite BUCKLING POST-BUCKLING Finite element method Stiffened panels
原文传递
An EMG-Based Biomimetic Variable Stiffness Modulation Strategy for Bilateral Motor Skills Relearning of Upper Limb Elbow Joint Rehabilitation 被引量:1
18
作者 Ziyi Yang Shuxiang Guo +2 位作者 Keisuke Suzuki Yi Liu Masahiko Kawanishi 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第4期1597-1612,共16页
Bilateral rehabilitation systems with bilateral or unilateral assistive robots have been developed for hemiplegia patients to recover their one-side paralysis.However,the compliant robotic assistance to promote bilate... Bilateral rehabilitation systems with bilateral or unilateral assistive robots have been developed for hemiplegia patients to recover their one-side paralysis.However,the compliant robotic assistance to promote bilateral inter-limb coordination remains a challenge that should be addressed.In this paper,a biomimetic variable stiffness modulation strategy for the Variable Stiffness Actuator(VSA)integrated robotic is proposed to improve bilateral limb coordination and promote bilateral motor skills relearning.An Electromyography(EMG)-driven synergy reference stiffness estimation model of the upper limb elbow joint is developed to reproduce the muscle synergy effect on the affected side limb by independent real-time stiffness control.Additionally,the bilateral impedance control is incorporated for realizing compliant patient-robot interaction.Preliminary experiments were carried out to evaluate the tracking performance and investigate the multiple task intensities’influence on bilateral motor skills relearning.Experimental results evidence the proposed method could enable bilateral motor task skills relearning with wide-range task intensities and further promote bilateral inter-limb coordination. 展开更多
关键词 Biomimetic stiffness modulation Compliant physical human-robot interaction(pHRI) Electromyography(EMG) variable stiffness actuator(VSA) Rehabilitation robotics Synergy-based control Skill relearning
原文传递
Vibrations of tandem cold rolling mill: coupled excitation of rolling force and variable stiffness of fault-free back-up roll bearing 被引量:1
19
作者 Yu-jie Liu Shen Wang +1 位作者 Jie-bin Qi Xiao-qiang Yan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第9期1792-1802,共11页
Vibration issues of a five-stand tandem cold rolling mill were found in the steel production practice,and the experimental observation and numerical analysis indicated that the vibrations were related to the back-up r... Vibration issues of a five-stand tandem cold rolling mill were found in the steel production practice,and the experimental observation and numerical analysis indicated that the vibrations were related to the back-up roll bearing.The results were validated by replacing the back-up roll bearing with the new bearing resulting in 30%decline in vibration amplitude.Models describing the four-row cylindrical roller bearing and the vertical system of the cold rolling mill including the bearing were established.Moreover,the mechanisms of periodic excitation and amplified vibrations of fault-free bearing were explained theoretically,along with the analysis of bifurcation behaviors of the motion states of the roller bearing and rolling mill system.It is found that the energy transmitted between vibrations with different frequencies if multiple excitation frequencies in the rolling mill system were close. 展开更多
关键词 Rolling mill vibration Cold tandem mill Fault-free bearing Vibration amplification variable stiffness Characteristics
原文传递
Structural design and stiffness matching control of bionic variable stiffness joint for human–robot collaboration 被引量:1
20
作者 Xiuli Zhang Liqun Huang Hao Niu 《Biomimetic Intelligence & Robotics》 2023年第1期46-56,共11页
The physical compliance of interaction is an important requirement for safe and efficient collaboration between robots and humans,and the realization of human–robot compliance requires robot joints with variable stif... The physical compliance of interaction is an important requirement for safe and efficient collaboration between robots and humans,and the realization of human–robot compliance requires robot joints with variable stiffness similar to those of human joints.In this study,based on the tissue structure and driving principle of the human arm muscle ligament,a robot joint with variable stiffness is designed,consisting of an elastic belt and serial elastic actuator in parallel.The variable stiffness of the joint is realized by adjusting the tension length of the elastic belt.Surface electromyography(sEMG)signals of the human arm are used as the characterization quantity of joint stiffness to establish the pseudostiffness model of the elbow joint.The stiffness of the robot joints is adjusted in real-time to match the human arm stiffness based on the changes in sEMG signals of the human arm during operation.Real-time compliant interaction of human–robot collaboration is realized based on an end stiffness matching strategy.Additionally,to verify the effectiveness of the human joint stiffness matching-based compliance control strategy,a human–robot cooperative lifting experiment was designed.The bionic variable stiffness joint shows good stiffness adjustment,and the human–robot joint stiffness matching strategy based on human sEMG signals can improve the effectiveness and comfort of human–robot collaboration. 展开更多
关键词 variable stiffness joint Bionic design Human-robot collaboration stiffness matching SEMG
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部