期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Parallel Expectation-Maximization Algorithm for Large Databases
1
作者 黄浩 宋瀚涛 陆玉昌 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期420-424,共5页
A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in ge... A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in generic statistical problems, the EM algorithm has been widely used in many domains. But it often requires significant computational resources. So it is needed to develop more elaborate methods to adapt the databases to a large number of records or large dimensionality. The parallel EM algorithm is based on partial Esteps which has the standard convergence guarantee of EM. The algorithm utilizes fully the advantage of parallel computation. It was confirmed that the algorithm obtains about 2.6 speedups in contrast with the standard EM algorithm through its application to large databases. The running time will decrease near linearly when the number of processors increasing. 展开更多
关键词 expectation-maximization em algorithm incremental em lazy em parallel em
下载PDF
EM算法的参数分辨率 被引量:3
2
作者 鲁纳纳 余旌胡 《数学物理学报(A辑)》 CSCD 北大核心 2019年第3期638-648,共11页
参数分辨率是在给定噪声情况下,衡量两个相近信号能否区分开的一个标准,为敏感参数、有效精度以及准确度的衡量提供了评估的"尺子".该文以EM算法为基础,结合Fisher线性判别准则的思想,给出EM算法参数分辨率的定义,并以两正态... 参数分辨率是在给定噪声情况下,衡量两个相近信号能否区分开的一个标准,为敏感参数、有效精度以及准确度的衡量提供了评估的"尺子".该文以EM算法为基础,结合Fisher线性判别准则的思想,给出EM算法参数分辨率的定义,并以两正态混合模型为例进行验证.实验表明两个方差为0.1的正态分布其均值距离大于0.206时,EM算法在90%的置信度下可以区分这两个分布,通过构建实验结果和理论推导之间的联系,得到不同置信度下的比例因子图.参数分辨率的提出,为准确度的衡量提供一个定量指标,也为相近信号的区分提供新的解决方案. 展开更多
关键词 em算法 分辨率 判别准则 变异系数
下载PDF
ITERATIVE RECEIVER FOR OFDM-SDMA SYSTEM
3
作者 ShanShuwei LuoHanwen SongWentao 《Journal of Electronics(China)》 2004年第5期359-365,共7页
An iterative receiver is proposed based on the EM (Expectation-Maximization)algorithm for an OFDM-SDMA (Orthogonal Frequency Division Multiplexing-Space Division Multiple Access) system. By using a few pilots in every... An iterative receiver is proposed based on the EM (Expectation-Maximization)algorithm for an OFDM-SDMA (Orthogonal Frequency Division Multiplexing-Space Division Multiple Access) system. By using a few pilots in every OFDM symbol, both channel estimation and multiuser detection can be simultaneously obtained by iteration. The computer simulation results show this receiver can track channel variations and detect multiuser symbols for different number of users under time-varying multipath channels. 展开更多
关键词 Orthogonal Frequency Division Multiplexing (OFDM) Space Division Multiple Access (SDMA) expectation-maximization(em) algorithm Channel estimation Multiuser detection
下载PDF
基于VBEM的ARFA模型参数推导和故障检测
4
作者 李吉俊 章智杰 +1 位作者 李其操 董自健 《现代信息科技》 2020年第24期1-5,9,共6页
文章使用自回归因子分析模型(ARFA)对数据样本进行动态过程建模,分析了卡尔曼滤波和EM算法在估计ARFA模型中回归矩阵参数A和载荷矩阵参数C的方法。在此基础上,提出了一种使用变分贝叶斯EM(VBEM)故障检测方法,对ARFA模型参数A和C进行推... 文章使用自回归因子分析模型(ARFA)对数据样本进行动态过程建模,分析了卡尔曼滤波和EM算法在估计ARFA模型中回归矩阵参数A和载荷矩阵参数C的方法。在此基础上,提出了一种使用变分贝叶斯EM(VBEM)故障检测方法,对ARFA模型参数A和C进行推断和动态过程故障检测。仿真实验结果表明,在ARFA模型下,VBEM方法对下文所述的阶跃信号、斜坡信号等四类故障的检测效果要优于EM方法对该类故障的检测效果,并且降低了平均迭代次数。 展开更多
关键词 自回归因子分析模型 em算法 变分贝叶斯em 故障检测
下载PDF
Integrating petrophysical data into efficient iterative cluster analysis for electrofacies identification in clastic reservoirs
5
作者 Mohammed A.Abbas Watheq J.Al-Mudhafar +1 位作者 Aqsa Anees David A.Wood 《Energy Geoscience》 EI 2024年第4期291-305,共15页
Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent an... Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data. 展开更多
关键词 Cluster analysis Electrofacies classification expectation-maximization(em)algorithm Clastic reservoir Maximum likelihood estimate(MLE)
下载PDF
基于变分贝叶斯的数据分类算法 被引量:6
6
作者 张文倩 王瑛 +1 位作者 张红梅 宋增杰 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2017年第2期89-94,共6页
随着互联网技术的高速发展,数据库的规模和复杂度不断增长,传统的分类方法已经不能满足复杂数据的分类需求,针对此类问题,提出了一种基于变分贝叶斯的数据分类算法。该算法在传统贝叶斯推断上引入变分近似理论,结合最大期望算法思想,利... 随着互联网技术的高速发展,数据库的规模和复杂度不断增长,传统的分类方法已经不能满足复杂数据的分类需求,针对此类问题,提出了一种基于变分贝叶斯的数据分类算法。该算法在传统贝叶斯推断上引入变分近似理论,结合最大期望算法思想,利用统计物理中的平均场理论,并以混合高斯模型为例进行了实验仿真。实验结果证明,随机生成数据在经过382次迭代后,能明显看出由3组高斯模型混合而成,似然函数的下界随迭代次数增加不断上升,在350次迭代后曲线与预想一样趋于平缓,并且在误差允许的范围内得到接近真实数据的均值和逆协方差矩阵,实现其分类处理。在保证高精度的要求下计算速度更快、效率更高、更符合实际工程的应用背景。 展开更多
关键词 变分贝叶斯 分类算法 最大期望算法
下载PDF
去除乘性噪声的重加权各向异性全变差模型 被引量:14
7
作者 王旭东 冯象初 霍雷刚 《自动化学报》 EI CSCD 北大核心 2012年第3期444-451,共8页
恢复含乘性噪声的图像是当前图像处理的重要研究课题.本文提出基于迭代重加权的各向异性全变差(Total variation,TV)模型.新模型中,假定乘性噪声服从Gamma分布.正则项采用加权的各向异性全变差,其中,自适应权函数由期望最大(Expectation... 恢复含乘性噪声的图像是当前图像处理的重要研究课题.本文提出基于迭代重加权的各向异性全变差(Total variation,TV)模型.新模型中,假定乘性噪声服从Gamma分布.正则项采用加权的各向异性全变差,其中,自适应权函数由期望最大(Expectation maximization,EM)算法得到.新模型在有效去噪的同时,较好地保留了图像的边缘和细节信息,同时能够有效地抑制"阶梯效应".数值实验验证了新模型的效果. 展开更多
关键词 图像去噪 乘性噪声 期望最大算法 全变差 迭代重加权
下载PDF
基于复发瞬间链接间隔的动态网络社区发现
8
作者 赵晓兵 王佳顺 《统计与信息论坛》 CSSCI 北大核心 2023年第4期3-18,共16页
纵向网络数据是较为常见的复杂网络数据,也是目前网络数据分析的热点之一。随机块模型是网络社区发现的经典模型,但是该模型无法直接用于模拟纵向网络数据。基于随机块模型,引入半参数比例风险模型去分析纵向网络数据,并利用随机块模型... 纵向网络数据是较为常见的复杂网络数据,也是目前网络数据分析的热点之一。随机块模型是网络社区发现的经典模型,但是该模型无法直接用于模拟纵向网络数据。基于随机块模型,引入半参数比例风险模型去分析纵向网络数据,并利用随机块模型来描述复发瞬间链接间隔。结合变分EM算法,采用两步估计来分别估计模型参数和非参数部分,通过不同场景下的模拟试验来验证所提议模型的优良性,最后利用法国小学生的社交网络数据进行了实证分析。模拟和实证结果表明,在统计计算的时效和参数或非参数估计的精度上,本文所提出的网络数据模型和统计分析方法比现存文献的模型和方法具有较好的优势。 展开更多
关键词 随机块模型 边际比例风险模型 变分em算法 传染病防控
下载PDF
不完全数据参数估计问题的算法综述与评价 被引量:5
9
作者 葛勇 叶中行 《宁夏大学学报(自然科学版)》 CAS 2003年第1期36-41,共6页
综述了不完全数据参数估计的EM算法、Gibbs抽样和界定折叠法等算法,并分析了这些算法的优缺点.
关键词 不完全数据 参数估计 em算法 GIBBS抽样 界定折叠法 变分法 数理统计
下载PDF
结合深度学习的监督主题模型 被引量:1
10
作者 苑东东 赵杰煜 叶绪伦 《模式识别与人工智能》 EI CSCD 北大核心 2018年第8期715-724,共10页
无监督主题模型在降维过程中缺少标签信息的指导,丢失一些具有判别性的文本特征,导致最终的分类结果不理想.因此,文中提出结合深度学习的监督主题模型,利用深度网络强大的非线性拟合能力建立文档主题分布与标签之间的映射,利用变分期望... 无监督主题模型在降维过程中缺少标签信息的指导,丢失一些具有判别性的文本特征,导致最终的分类结果不理想.因此,文中提出结合深度学习的监督主题模型,利用深度网络强大的非线性拟合能力建立文档主题分布与标签之间的映射,利用变分期望最大化(EM)和深度网络训练方法共同完成贝叶斯框架下模型参数的更新,通过改变网络结构和激活函数的类型,用于分类和回归任务.实验表明文中模型既能保持无监督主题模型隐含主题的提取能力,还能更好地完成分类和回归任务. 展开更多
关键词 监督主题模型 深度学习 变分期望最大化(em)算法
下载PDF
Mapping of quantitative trait loci using the skew-normal distribution 被引量:3
11
作者 FERNANDES Elisabete PACHECO António PENHA-GONALVES Carlos 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第11期792-801,共10页
In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use th... In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use the previous model after data transformation. However, an appropriate transformation may not exist or may be difficult to find. Also this approach can raise interpretation issues. An interesting alternative is to consider a skew-normal mixture model in standard IM, and the resulting method is here denoted as skew-normal IM. This flexible model that includes the usual symmetric normal distribution as a special case is important, allowing continuous variation from normality to non-normality. In this paper we briefly introduce the main peculiarities of the skew-normal distribution. The maximum likelihood estimates of parameters of the skew-normal distribution are obtained by the expectation-maximization (EM) algorithm. The proposed model is illustrated with real data from an intercross experiment that shows a significant departure from the normality assumption. The performance of the skew-normal IM is assessed via stochastic simulation. The results indicate that the skew-normal IM has higher power for QTL detection and better precision of QTL location as compared to standard IM and nonparametric IM. 展开更多
关键词 Interval mapping (IM) Quantitative trait loci (QTL) Skew-normal distribution expectation-maximization em)algorithm
下载PDF
Robust Object Tracking under Appearance Change Conditions 被引量:1
12
作者 Qi-Cong Wang Yuan-Hao Gong Chen-Hui Yang Cui-Hua Li Department of Computer Science, Xiamen University, Xiamen 361005, PRC 《International Journal of Automation and computing》 EI 2010年第1期31-38,共8页
We propose a robust visual tracking framework based on particle filter to deal with the object appearance changes due to varying illumination, pose variantions, and occlusions. We mainly improve the observation model ... We propose a robust visual tracking framework based on particle filter to deal with the object appearance changes due to varying illumination, pose variantions, and occlusions. We mainly improve the observation model and re-sampling process in a particle filter. We use on-line updating appearance model, affine transformation, and M-estimation to construct an adaptive observation model. On-line updating appearance model can adapt to the changes of illumination partially. Affine transformation-based similarity measurement is introduced to tackle pose variantions, and M-estimation is used to handle the occluded object in computing observation likelihood. To take advantage of the most recent observation and produce a suboptimal Gaussian proposal distribution, we incorporate Kalman filter into a particle filter to enhance the performance of the resampling process. To estimate the posterior probability density properly with lower computational complexity, we only employ a single Kalman filter to propagate Gaussian distribution. Experimental results have demonstrated the effectiveness and robustness of the proposed algorithm by tracking visual objects in the recorded video sequences. 展开更多
关键词 Visual tracking particle filter observation model Kalman filter expectation-maximization em algorithm
下载PDF
基于协变量的混合隶属度随机块模型的社区发现方法 被引量:2
13
作者 杨晓 赵晓兵 《统计与决策》 CSSCI 北大核心 2021年第20期15-19,共5页
文章提出了一个含有多维协变量的混合隶属度随机块模型的社区发现方法。首先使用基于变量选择的变分EM算法去实现模型的参数估计,然后通过数值模拟来评估所提出模型和估计方法的优劣,最后通过一组Facebook的实际数据进行实证分析。通过... 文章提出了一个含有多维协变量的混合隶属度随机块模型的社区发现方法。首先使用基于变量选择的变分EM算法去实现模型的参数估计,然后通过数值模拟来评估所提出模型和估计方法的优劣,最后通过一组Facebook的实际数据进行实证分析。通过模拟和实例分析发现,含有协变量的混合隶属度随机块模型的社区发现效果要优于不含协变量的混合隶属度随机块模型的社区发现效果。 展开更多
关键词 混合隶属度 社交网络 协变量 变量选择 变分em算法
下载PDF
Modeling Methods in Clustering Analysis for Time Series Data
14
作者 Naglaa A. Morad 《Open Journal of Statistics》 2020年第3期565-580,共16页
This paper is concerned about studying modeling-based methods in cluster analysis to classify data elements into clusters and thus dealing with time series in view of this classification to choose the appropriate mixe... This paper is concerned about studying modeling-based methods in cluster analysis to classify data elements into clusters and thus dealing with time series in view of this classification to choose the appropriate mixed model. The mixture-model cluster analysis technique under different covariance structures of the component densities is presented. This model is used to capture the compactness, orientation, shape, and the volume of component clusters in one expert system to handle Gaussian high dimensional heterogeneous data set. To achieve flexibility in currently practiced cluster analysis techniques. The Expectation-Maximization (EM) algorithm is considered to estimate the parameter of the covariance matrix. To judge the goodness of the models, some criteria are used. These criteria are for the covariance matrix produced by the simulation. These models have not been tackled in previous studies. The results showed the superiority criterion ICOMP PEU to other criteria.<span> </span><span>This is in addition to the success of the model based on Gaussian clusters in the prediction by using covariance matrices used in this study. The study also found the possibility of determining the optimal number of clusters by choosing the number of clusters corresponding to lower values </span><span><span><span>for the different criteria used in the study</span></span></span><span><span><span>. 展开更多
关键词 Gaussian Mixture Model-Based Clustering (GMMC) The expectation-maximization (em) algorithm AIC SBC ICOMP PEU
下载PDF
Performance analysis of two EM-based measurement bias estimation processes for tracking systems 被引量:2
15
作者 Zhi-hua LU Meng-yao ZHU +1 位作者 Qing-wei YE Yu ZHOU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第9期1151-1165,共15页
In target tracking, the measurements collected by sensors can be biased in some real scenarios, e.g., due to systematic error. To accurately estimate the target trajectory, it is essential that the measurement bias be... In target tracking, the measurements collected by sensors can be biased in some real scenarios, e.g., due to systematic error. To accurately estimate the target trajectory, it is essential that the measurement bias be identified in the first place. We investigate the iterative bias estimation process based on the expectation-maximization(EM)algorithm, for cases where sufficiently large numbers of measurements are at hand. With the assistance of extended Kalman filtering and smoothing, we derive two EM estimation processes to estimate the measurement bias which is formulated as a random variable in one state-space model and a constant value in another. More importantly,we theoretically derive the global convergence result of the EM-based measurement bias estimation and reveal the link between the two proposed EM estimation processes in the respective state-space models. It is found that the bias estimate in the second state-space model is more accurate and of less complexity. Furthermore, the EM-based iterative estimation converges faster in the second state-space model than in the first one. As a byproduct, the target trajectory can be simultaneously estimated with the measurement bias, after processing a batch of measurements.These results are confirmed by our simulations. 展开更多
关键词 Non-linear state-space model Measurement bias Extended Kalman filter Extended Kalman smoothing expectation-maximization em algorithm
原文传递
Bayesian operational modal analysis of a long-span cable-stayed sea-crossing bridge 被引量:7
16
作者 Yan-long XIE Binbin LI Jian GUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第7期553-564,共12页
Sea-crossing bridges have attracted considerable attention in recent years as an increasing number of projects have been constructed worldwide.Situated in the coastal area,sea-crossing bridges are subjected to a harsh... Sea-crossing bridges have attracted considerable attention in recent years as an increasing number of projects have been constructed worldwide.Situated in the coastal area,sea-crossing bridges are subjected to a harsh environment(e.g.strong winds,possible ship collisions,and tidal waves)and their performance can deteriorate quickly and severely.To enhance safety and serviceability,it is a routine process to conduct vibration tests to identify modal properties(e.g.natural frequencies,damping ratios,and mode shapes)and to monitor their long-term variation for the purpose of early-damage alert.Operational modal analysis(OMA)provides a feasible way to investigate the modal properties even when the cross-sea bridges are in their operation condition.In this study,we focus on the OMA of cable-stayed bridges,because they are usually long-span and flexible to have extremely low natural frequencies.It challenges experimental capability(e.g.instrumentation and budgeting)and modal identification techniques(e.g.low frequency and closely spaced modes).This paper presents a modal survey of a cable-stayed sea-crossing bridge spanning 218 m+620 m+218 m.The bridge is located in the typhoon-prone area of the northwestern Pacific Ocean.Ambient vibration data was collected for 24 h.A Bayesian fast Fourier transform modal identification method incorporating an expectation-maximization algorithm is applied for modal analysis,in which the modal parameters and associated identification uncertainties are both addressed.Nineteen modes,including 15 translational modes and four torsional modes,are identified within the frequency range of[0,2.5 Hz]. 展开更多
关键词 Cable-stayed sea-crossing bridge Operational modal analysis(OMA) Bayesian modal identification expectation-maximization(em)algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部