This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properti...This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properties of the transition probabilities are showed.展开更多
The structure and function of protein are strongly pH-dependence. However, the inonization state of the protein varied with the pH value also depends on the local structure
Let W be the limit of the normalized population size of a supercritical branching process in a varying or random environment. By an elementary method, we find sufficient conditions under which W has finite weighted mo...Let W be the limit of the normalized population size of a supercritical branching process in a varying or random environment. By an elementary method, we find sufficient conditions under which W has finite weighted moments of the form EWpl(W), where p > 1, l 0 is a concave or slowly varying function.展开更多
Let(Z_(n))be a supercritical bisexual branching process in a random environmentξ.We study the almost sure(a.s.)convergence rate of the submartingale W_(n)=Z_(n)/In to its limit W,where(In)is an usually used norming s...Let(Z_(n))be a supercritical bisexual branching process in a random environmentξ.We study the almost sure(a.s.)convergence rate of the submartingale W_(n)=Z_(n)/In to its limit W,where(In)is an usually used norming sequence.We prove that under a moment condition of order p∈(1,2),W-W_(n)=o(e^(-na))a.s.for some a>0 that we find explicitly;assuming the logarithmic moment condition holds,we haveW-W_(n)=o(n^(-α))a.s..In order to obtain these results,we provide the L^(p)-convergence of(W_(n));similar conclusions hold for a bisexual branching process in a varying environment.展开更多
基金supported by NNSF of China(6053408070571079)Open Fundation of SKLSE of Wuhan University (2008-07-03)
文摘This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properties of the transition probabilities are showed.
文摘The structure and function of protein are strongly pH-dependence. However, the inonization state of the protein varied with the pH value also depends on the local structure
基金supported by National Natural Science Foundation of China (Grant No. 10771021)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20104306110001)+1 种基金the Planned Science and Technology Project of Hunan Province (Grant Nos. 2010fj6036, 2009fi3098)the Scientific Research Fund of Hunan Provincial Education Department (Grant Nos. 08C120, 09C113, 09C059)
文摘Let W be the limit of the normalized population size of a supercritical branching process in a varying or random environment. By an elementary method, we find sufficient conditions under which W has finite weighted moments of the form EWpl(W), where p > 1, l 0 is a concave or slowly varying function.
基金supported by the Fundamental Research Funds for the Central University (Grant No.19JNLH09)Innovation Team Project in Guangdong Province,P.R.China (Grant No.2016WCXTD004)+1 种基金supported by the National Natural Science Foundation of China (Grants no.11731012,12271062)Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (Changsha University of Science&Technology)。
文摘Let(Z_(n))be a supercritical bisexual branching process in a random environmentξ.We study the almost sure(a.s.)convergence rate of the submartingale W_(n)=Z_(n)/In to its limit W,where(In)is an usually used norming sequence.We prove that under a moment condition of order p∈(1,2),W-W_(n)=o(e^(-na))a.s.for some a>0 that we find explicitly;assuming the logarithmic moment condition holds,we haveW-W_(n)=o(n^(-α))a.s..In order to obtain these results,we provide the L^(p)-convergence of(W_(n));similar conclusions hold for a bisexual branching process in a varying environment.