Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including func...Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including functioning as a growth factor, and as a contractile hormone, among others. The aim of this work was to examine the impact of Ang II on the expression and function of α<sub>1</sub>-adrenergic receptors (α<sub>1</sub>-ARs) in cultured rat aorta, and aorta-derived smooth muscle cells. Isolated Wistar rat aorta was incubated for 24 h in DMEM at 37˚C, then subjected to isometric tension and to the action of added norepinephrine, in concentration-response curves. Ang II was added (1 × 10<sup>−5</sup> M), and in some experiments, 5-Methylurapidil (α<sub>1A</sub>-AR antagonist), AH11110A (α<sub>1B</sub>-AR antagonist), or BMY-7378 (α<sub>1D</sub>-AR antagonist), were used to identify the α<sub>1</sub>-AR involved in the response. Desensitization of the contractile response to norepinephrine was observed due to incubation time, and by the Ang II action. α<sub>1D</sub>-AR was protected from desensitization by BMY-7378;while RS-100329 and prazosin partially mitigated desensitization. In another set of experiments, isolated aorta-derived smooth muscle cells were exposed to Ang II and α<sub>1</sub>-ARs proteins were evaluated. α<sub>1D</sub>-AR increased at 30 and 60 min post Ang II exposure, the α<sub>1A</sub>-AR diminished from 1 to 4 h, while α<sub>1B</sub>-AR remained unchanged over 24 h of Ang II exposure. Ang II induced an increase of α<sub>1D</sub>-AR at short times, and BMY-7378 protected α<sub>1D</sub>-AR from desensitization.展开更多
The aim of this study was to establish a method of isolating and culturing smooth muscle cells from the ductus deferens of rats. Smooth muscle cells were prepared from ductus deferens by explanting technique after dis...The aim of this study was to establish a method of isolating and culturing smooth muscle cells from the ductus deferens of rats. Smooth muscle cells were prepared from ductus deferens by explanting technique after dissection of adventitia and intimae, and cultured in vitro. The identification of the smooth muscle cells were verified by using anti u-smooth muscle actin (a-SMA) immunohistochemistry studies. The result suggested that the cells are multi-morphous, showing long fusiform or star shapes. The apophysis of cells contacted and coalesced to each other, in some regions the cells overlapped in multilayer, while in the other regions they formed monolayer that fluctuated and showed a "peak-valley" shape. They presented a positive reaction through immunohistochemistry studies. The purity of the cells was more than 99% through this method. The culturing of smooth muscle cells by explanting technique is simple and stable.展开更多
The effects of sodium ferulate(SF), a water-soluble element of Chinese medicine Angelica sinensis diels, on cell-mediated oxidative modification of human low density lipoprotein(LDL) and proliferation of rabbit aortic...The effects of sodium ferulate(SF), a water-soluble element of Chinese medicine Angelica sinensis diels, on cell-mediated oxidative modification of human low density lipoprotein(LDL) and proliferation of rabbit aortic smooth muscle cells(SMCs) were investigated. Using experimental models of proliferation of cultured rabbit aortic SMCs induced by oxidized LDL(ox-LDL), the extent of oxidation was determined by thiobarbituric acid reactive substances(TBARS) method, MTT colorimetry and 3H-thymidine(3H-TdR) incorporation were used to observe proliferation of SMCs. It showed that SF effectively inhibited cell-mediated oxidation induced by Cu2+ in a concentration-dependent manner. At the final concentration of 40, 80, 120 gmL-1, SF could significantly inhibit 3H-TdR incorporation and cell Proliferation in a dose-dependent manner. The results indicated that SF could, in vitro protect LDL against oxidative modification and inhibit the proliferation of SMC, which might be due to its free radical scavenging capacity.展开更多
Objective: To investigate the effect of intravascular in radiation on thearterial wall smooth muscle cells (SMCs) proliferation and apoptosis after iliac artery bollominjury in figs. Methods: Twenty-seven miniature fi...Objective: To investigate the effect of intravascular in radiation on thearterial wall smooth muscle cells (SMCs) proliferation and apoptosis after iliac artery bollominjury in figs. Methods: Twenty-seven miniature figs were divided into three groups. All pigsunderwent iliac artery balloon over-stretch. An^(192) Ir source through afterloader was positionedat the injuried segments to give 10 Gy in 9 pigs and 20 Gy in the other 9 pigs, and the rest 9 pigswere, used as control group. The pigs were killed on the 3rd, 10th and 28th days respectively forobservation. The injured segments were processed to examine SMCs proliferation by proliferation cellnuclear antigen (PCNA) and apopto-sis by terminal deoxynucleotidyl transferase-mediated dUTPnick-end labeling (TUNEL). Results: PC-NA index analysis has some that SMCs proliferation inneointima was significantly inhibited in irradiation group on the 10th and 28th days. The value forintimal SMCs apoptosis in control vs 10 Gy and 20 Gy irradiation groups were: (1. 185+-0. 49)% vs(2. 27+-0. 49)%(P>0. 05) and (1. 85+-0. 49)% vs (2. 53+-0. 45)%(P<0. 05), at the 10th day; (1.61+-0. 35)% vs (3. 11+-0. 51)%(P<0. 05), and (1.61+-0. 35)% vs (7. 05+-1. 82)% (P<0. 05), on the28th day. In irradiated arteries, the maximal incidence of intimal SMCs apoptosis was (7. 05+--1.82)% in 20 Gy group vs (3. 11+-0. 51)% in 10 Gy group (P<0. 05), on the 28th day. In the same doseirradiation group, the incidence of intimal SMCs apoptosis was higher on the 28th day than that onthe 10th day. Conclusion: Intra-arterial gamma irradiation can inhibit intimal SMCs proliferationand stimulate SMCs apoptosis in balloon-in jured arteries. These may be contributive to preventionof restenosis of arteries after balloon injury.展开更多
Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter ...Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter was constructed by reporter gene system and was transiently transfected into VSMCs and THP-1 in vitro. The promoter activity was tested by luciferase activity with or without LPS and Ang Ⅱ stimulation, before and after different dosage of As2O3 treatment. Results 1. TNF-α promoter effectively expressed in VSMCs and THP-1 compared with CMV promoter (58.3% and 80.9%, respectively). Both LPS and Ang Ⅱ significantly up-regulated TNF-α promoter activity (P〈0.05). 2. As2O3 significantly inhibited, both intact and LPS/Ang Ⅱ stimulated promoter activity, in a dose dependent manner (P〈0.05), and in both cell type. Conclusion These results manifested that, the inhibition effect of As2O3 on the activity of human TNF-α promoter indicated its potential inhibition on pro-inflammatory cytokine genes expression at transcriptional level and its potential anti-inflammatory property in the cardiovascular system.展开更多
Objective: This study aims to investigate the effects of urocortin (Ucn) on the viability of endothelial cells (ECV304) and rat vascular muscle cells (VSMC). Methods: Rat aortic VSMC were isolated from the rats' t...Objective: This study aims to investigate the effects of urocortin (Ucn) on the viability of endothelial cells (ECV304) and rat vascular muscle cells (VSMC). Methods: Rat aortic VSMC were isolated from the rats' thoracic aorta. We studied the effect of Ucn on the viability of ECV304 cells and VSMC by using a tetrazolium (MTT) assay.Results: Ucn (10 -7 mol/L) inhibited the viability of ECV304 cells and VSMC. Inhibition rates are 13% and 15%, respectively(P<0.05, compared with Control). This inhibition was not dependent on the affecting time and was not affected by the addition of ATP-sensitive potassium channel (KATP channel) blocker, glybenclamide (Gly, 10 mol/L). Conclusion: Ucn inhibits the viability of ECV304 and VSMC. Our results suggest that Ucn may be a new vasoactive agent and may have a beneficial effect in the process of vascular remodeling (VR).展开更多
\ The effects of tetrandrine (Tet) on cytosolic free calcium ([Ca2+]i) in subcultured bovine aortic smooth muscle cells (SMC) were studied by Fura2 and ARCMMIC cation measurement system. Tet (1~100 μmol·L-1) ...\ The effects of tetrandrine (Tet) on cytosolic free calcium ([Ca2+]i) in subcultured bovine aortic smooth muscle cells (SMC) were studied by Fura2 and ARCMMIC cation measurement system. Tet (1~100 μmol·L-1) had no effect on the resting [Ca2+]i, but had inhibitory effects on [Ca2+]i elevation induced by high K+, 5HT, ATP, Ang II and NE in the presence of extracellular Ca2+. High concentration of Tet also inhibited Pheinduced [Ca2+]i elevation in absence of extracellular Ca2+. Tet (1~100 μmol·L-1) inhibited KCl (60 mmol·L-1) induced [Ca2+]i elevation in dosedependent manner, the IC50 value was 9.2 (95% confidence limits: 5.7~14.9) mmol·L-1. The results suggested that Tet had blocking effects on both VOC and ROC in bovine aortic SMC. It appears that the mechanisms of blocking effect of Tet on ROC might be primarily due to its Ca2+ entry blocking effects.展开更多
To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we establishe...To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.展开更多
This study compared tankyrase 1 expression and autophagy quantity between erectile dysfunction (ED) and non-ED rats' corpus cavernosum smooth muscle cells (CSMCs). This study aslo explored the effect and possible...This study compared tankyrase 1 expression and autophagy quantity between erectile dysfunction (ED) and non-ED rats' corpus cavernosum smooth muscle cells (CSMCs). This study aslo explored the effect and possible mechanism of tankyrase 1 on autophagy and cell proliferation in ageing ED rats' CSMCs. The intracavernous pres- sure and mean systemic arterial pressure were measured to investigate erectile function so that eight 24-month-old ED and eight 8-month-old male Wistar rats were choosed respectively. The rat CSMCs were isolated and cultured by enzyme digestion, in which tankyrase 1 expression and autophagy quantity were compared. Tankyrase 1 over-expression was induced with plasmid transfection by Lipofectamine^TM. The effect of tankyrase 1 overexpression on proliferation, autophagy and mTOR pathway in 24-month-old ED rats' CSMCs was measured by the cell growth curve in MTT assay, cell cycle analysis in flow cytometry (FCM), key protein expression in Western blot, autophagy quantity in transmission electron microscopy, monodansylcadaverine staining and GFP-LC3 fluorescence. The primary CSMCs were confirmed by immunofluorescence, and the purity was 99.1% in FCM. Compared with that of 8-month-old rats, tankyrase 1 expression and autophagy quantity significantly decreased in 24-month-old ED rats' primary CSMCs (P 〈 0.01). Tankyrase 1 overexpression significantly increased the growth rate (P 〈 0.05) and increased the S phase of cell cycle (P 〈 0.01). The autophagosome quantity was remarkably increased (P 〈 0.01), LC3-Ⅰ/Ⅱ and Beclin 1 were upregulated (P 〈 0.01 and P 〈 0.05), and p-p70S6K (Thr389) was downregulated in 24-month-old ED rat CSMCs (P 〈 0.05). In conclusion, Tankyrase 1 and autophagy decrease in the CSMCs from aging rats with ED, and tankyrase 1 may have a positive effect on proliferation by enhancing autophagy and regulating the mTOR signalling pathway.展开更多
The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of atherosclerotic lesions. Baicalin, an herb-derived flavonoid compound, has been previously shown...The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of atherosclerotic lesions. Baicalin, an herb-derived flavonoid compound, has been previously shown to induce apoptosis and growth inhibition in cancer cells through multiple pathways. However, the potential role of baicalin in regulation of VSMC proliferation and prevention of cardiovascular diseases remains unexplored. In this study, we show that pretreatment with baicalin has a dose-dependent inhibitory effect on PDGF-BB-stimulated VSMC pro- liferation, accompanied with the reduction of proliferating cell nuclear antigen (PCNA) expression. We also show that baicalin-induced growth inhibition is associated with a decrease in cyclin E-CDK2 activation and increase in p27 level in PDGF-stimulated VSMCs, which appears to be at least partly mediated by blockade of PDGF recep- tor [~ (PDGFR~)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. In addition, baicalin was also found to inhibit adhesion molecule expression and cell migration induced by PDGF-BB in VSMCs. Furthermore, using an animal carotid arterial balloon-injury model, we found that baicalin significantly inhibited neointimal hyperplasia. Taken together, our results reveal a novel function of baicalin in inducing growth arrest of PDGF-stimulated VSMCs and suppressing neointimal hyperplasia after balloon injury, and suggest that the underlying mechanism involves the inhibition of cyclin E-CDK2 activation and the increase in p27 accumulation via blockade of the PDGFR^-ERK1/2 signaling cascade.展开更多
To investigate the influence of osteopontin (OPN) short hairpin RNA (shRNA) on the proliferation and activity of rat vascular smooth muscle cells (VSMCs), the expressing vector of shRNA targeting OPN was constru...To investigate the influence of osteopontin (OPN) short hairpin RNA (shRNA) on the proliferation and activity of rat vascular smooth muscle cells (VSMCs), the expressing vector of shRNA targeting OPN was constructed and transferred into the rat VSMCs. After amplification and purification, pGenesil-1/OPNshRNA1 (PG1), pGenesil-1/OPNshRNA2 (PG2) and pGenesil-1/OPNshRNAHK (PGH) were transfected into the cultured rat VSMC by LipofectamineTM 2000. Transfected cells were visualized by using an inverted fluorescent microscope. VSMCs transfected by optimal recombined plasmid was selected by culturing in G418 48 h later. Nude cells and cells transfected by PGH were used as control. The expression levels of OPN mRNA and protein were assayed by RT-PCR and Western blotting. The OPN of VSMCs was suppressed by transfection of optimal recombined plasmid, and the changes in cell proliferation, adhesion and motility were evaluated by MTT, adhesion test and transwell chamber test. Levels of type I and Ⅲ collagen were measured with ELISA kit. Our results showed that VSMCs stably transfected by OPN shRNA accounted for over 50% of total cells. OPN mRNA and protein were reduced by 81% and 67% (P〈0.01) by PG1, 73% and 52% (P〈0.01) by PG2, respectively while no change was found in PGH and non-treated VSMCs. PG1 significantly suppressed the proliferation, adhesion, mobility of VSMCs and reduced the amount of type Ⅰ and Ⅲ collagen. It is concluded that recombinant plasmid can be success-fully transfected into VSMCs by LipofectamineTM 2000 and inhibit the expression of OPN. The proliferation, adhesion and mobility of VSMCs can be inhibited by knocking down OPN expression. Moreover, the transferring capability of cells is attenuated, and the secretion of type Ⅰ and Ⅲ collagen is inhibited aftter knocking-down of OPN expression. The study provides experimental evidence for clinical prevention of restenosis after percutaneous coronary intervention (PCI) by RNA interference (RNAi) technology.展开更多
Objective To investigate the effects of saponins from Anemarrhena asphodeloides Bunge (SAaB) (Botanical Name: Anemarrhena Asphodeloidis Rhizoma) on the growth of vascular smooth muscle cells (VSMCs). Methods Ce...Objective To investigate the effects of saponins from Anemarrhena asphodeloides Bunge (SAaB) (Botanical Name: Anemarrhena Asphodeloidis Rhizoma) on the growth of vascular smooth muscle cells (VSMCs). Methods Cell proliferation was measured by a newly developed cell proliferation reagent, WST-1. Cell apoptosis was assayed by flow cytometry through detecting annexin V. Nitric oxide production was evaluated using confocal laser scanning microscopy with diaminofluorescein diacetate (DAF-2, DA). Cell aldose reductase (AR) activity, as well as the effect of Epalrestat and interleukin-1β were also explored. Results WST assay showed that cell proliferation induced by serum was significantly inhibited by SAaB (P〈0.01). Flow cytometry analysis revealed that SAaB could enhance apoptotic rate of VSMCs (P〈0.01). Nitric oxide production was significantly enhanced after administration of SAaB and interleukin-Iβ Moreover, AR activity of VSMCs was also remarkably inhibited by both SAaB and Epalrestat (P〈 0.01). Conclusion SAaB can inhibit proliferation and enhance apoptosis of VSMCs. It may protect vascular cells by inhibiting VSMC proliferation and augmenting apoptotic rate of VSMCs via NO-dependent pathway.展开更多
Summary: The main pathogenesis of saphenous vein graft neointimal hyperplasia after coronary artery bypass grafting (CABG) is inflammation-caused migration and proliferation of vascular smooth muscle cells (VSMCs...Summary: The main pathogenesis of saphenous vein graft neointimal hyperplasia after coronary artery bypass grafting (CABG) is inflammation-caused migration and proliferation of vascular smooth muscle cells (VSMCs). Janus kinase 2/signal transducer and activators of transcription 3 (JAK2/STAT3) path- way is an important signaling pathway through which VSMCs phenotype conversion occurs. Suppressor of cytokine signaling 3 (SOCS3) is the classic negative feedback inhibitor of JAK2/STAT3 pathway. Growing studies show that SOCS3 plays an important anti-inflammatory role in numerous autoimmune diseases, inflammatory diseases and inflammation-related tumors. However, the effect and mechanism of SOCS3 on vein graft disease is unclear. The purpose of this study was to investigate the effects of SOCS3 on the inflammation, migration and proliferation of VSMCs in vitro and the mechanism. The small interference RNA plasmid targeting rat SOCS3 (SiRNA-rSOCS3) and the recombinant adenovirus vector carrying rat SOCS3 gene (pYrAd-rSOCS3) were constructed, and the empty plamid (SiRNA-control) and vector (pYrAd-GFP) only carrying GFP reported gene were constructed as control. The rat VSMCs were cultured. There were two large groups of A (SOCS3 up-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+pYrAd-rSOCS3 group, IL-6/IFN-γ+pYrAd-GFP group; and B (SOCS3 down-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+SiRNA-rSOCS3 group and IL-6/IFN -T+SiRNA-control group. The pYrAd-rSOCS3 and SiRNA-rSOCS3 were transfected into VSMCs in- duced by IL-6/IFN-γ. After 24 h, real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were used to detect the mRNA and protein expression of SOCS3, STAT3 (only by Western blotting), P-STAT3 (only by Western blotting), IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1. The MTT, Transwell assay and flow cytometry were used to examine VSMCs proliferation, migration and cell cycle progression, respectively. As compared with control group, the mRNA and protein expression of SOCS3, STAT3, P-STAT3, IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly up-regulated in VSMCs stimulated by IL-6/IFN-γ. However, in VSMCs transfected with pYrAd-rSOCS3 before stimulation with IL-6/IFN-γ, the expression of SOCS3 mRNA and protein was further up-regulated, and that of STAT3, P-STAT3, IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly down-regulated as compared with IL-6/IFN-γ group and IL-6/IFN-γ+pYrAd-GFP group. The expression of those re- lated-cytokines in IL-6/IFN-γ+SiRNA-rSOCS3 group was markedly increased as compared with IL-6/IFN-γ group and IL-6/IFN-γ+SiRNA-control group. The absorbance (A) values, the number of cells migrating to the lower chamber, and percentage of cells in the G2/M+S phase were increased in VSMCs stimulated by IL-6/IFN-γ. In VSMCs incubated with pYrAd-rSOCS3 or SiRNA-rSOCS3 be- fore IL-6/IFN-γ stimulation, the A values, the number of cells migrating to the lower chamber, and the percentage of cells in the G2/M+S phase were significantly decreased, and increased respectively. These results imply that IL-6/IFN-γ, strong inflammatory stimulators, can promote transformation of VSMCs phenotype form a quiescent contractile state to a synthetic state by activating JAK2/STAT3 pathway. Over-expresssed SOCS3 might inhibit pro-inflammatory effect, migration and growth of VSMCs by blocking STAT3 activation and phosphorylation. These data in vitro confirm that SOCS3 may play a negatively regulatory role in development and progression of vein graft failure. These conclusions can provide a novel strategy for clinical treatment of vein graft diseases and a new theoretic clue for related drug development.展开更多
Iptakalim is a new ATP-sensitive potassium (KATp) channel opener, and it inhibits the proliferation of pulmonary arterial smooth muscle cells (PASMCs) and pulmonary vascular remodeling. However, the underlying mec...Iptakalim is a new ATP-sensitive potassium (KATp) channel opener, and it inhibits the proliferation of pulmonary arterial smooth muscle cells (PASMCs) and pulmonary vascular remodeling. However, the underlying mechanism remains unclear. In the present study, we found that iptakalim significantly decreased pulmonary artery pressure, inhibited pulmonary ariery remodeling and PKC-α overexpression in chronic hypoxia in a rat pulmonary hypertension model. Iptakalim reduced hypoxia-induced expression of PKC-α, and abolished the effect of hypoxia on PASMC proliferation significantly in a dose-dependent manner in vitro. Moreover, these effects were abol- ished by glibenclamide, a selective KArp channel antagonist. These results indicate that iptakalim inhibits PASMC proliferation and pulmonary vascular remodeling induced by hypoxia through downregulating the expression of PKC-α. Iptakalim can serve as a novel promising treatment for hypoxic pulmonary hypertension.展开更多
The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL wa...The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL was isolated and purified from human plasma. Ox-LDL was produced from LDL by being incubated with CuSO4. ox-LDL was then added to the culture medium at different concentrations (35, 60, 85, 110, 135 and 160μg/mL) for 7 days. The influence of ox-LDL on vSMC proliferation was observed in growth curve, mitosis index, and in situ determination of apoptosis. The data were analyzed with SPSS 10.0 software. The results showed that the ox-LDL produced in vitro had a good purity and optimal oxidative degree, which was similar to the intrinsic ox-LDL in atherosclerotic plaque, ox-LDL at a concentration of 35 μg/mL demonstrated the strongest proliferation inducement, and at a concentration of 135 μg/mL, ox-LDL could inhibit the growth of vSMC. ox-LDL at concentrations of 35 and 50 μg/mL presented powerful mitotic trigger, and with the increase of ox-LDL concentration, the mitotic index of vSMC was decreased gradually, ox-LDL at higher concentrations promoted more apoptotic vSMCs, ox-LDL at lower concentrations triggered proliferation of vSMCs, and at higher concentrations induced apoptosis in vSMCs, ox-LDL played a promotional role in the pathogenesis and development of atherosclerosis by affecting vSMC proliferation and apoptosis.展开更多
Objective:To explore effect of high glucose on expression of osteoprotegerin(OPG) and receptor activator of NF- κB ligand(RANKL) in rat aortic vascular smooth muscle cells.Methods:SD rats were intraperitoneally injec...Objective:To explore effect of high glucose on expression of osteoprotegerin(OPG) and receptor activator of NF- κB ligand(RANKL) in rat aortic vascular smooth muscle cells.Methods:SD rats were intraperitoneally injected with streptozotocin,OPG and RANKL expression in rat thoracic aortas were detected by immunohistochemical staining.In cultured vascular smooth muscle cells(VSMCs)(A7r5),qRT-PCR and Western blot analysis were used to examine the mRNA and protein levels of OPG and RANKL.Results:Our results demonstrated that OPG expression was increased in hyperglycemic rat aortic VSMCs.while RANKL expression was decreased.Besides,in vitro experiments high glucose induced OPG expression,but depressed RANKL expression by dose- and time-dependent manner in cultured A7r5.Conclusions:Our findings suggested that high glucose could promote the expression of OPG,and inhibit the expression of RANKL in VSMCs,which may be partly be the molecular mechanism of diabetic vascular calcification.展开更多
BACKGROUND: The expression of gax, an anti-prolifera-tive homeobox gene, is rapidly down-regulated in vascular smooth muscle cells (VSMCs) following arterial injury. Whether the down-regulation of gax is involved in m...BACKGROUND: The expression of gax, an anti-prolifera-tive homeobox gene, is rapidly down-regulated in vascular smooth muscle cells (VSMCs) following arterial injury. Whether the down-regulation of gax is involved in modulating the proliferation of smooth muscle cells of the splenic vein in patients with portal hypertension has not yet been elucidated. The aim of this study was to investigate the expression of the mRNA of the gax gene in smooth muscle cells of the splenic vein in patients with portal hypertension. METHODS: Reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect the expression of gax mRNA and immunohistochemistry staining was performed to demonstrate the expression of PCNA protein in the splenic veins of 28 patients with portal hypertension and those of 12 normal controls. This study was approved by the Institutional Ethics Committee and informed consent was obtained from all participants. RESULTS: RT-PCR showed that the expression of gax mRNA was PCNA-positive and negative in the splenic vein of patients with portal hypertension (1.08 ± 0.04 and 1.39 ± 0.27, respectively). There was a significant difference in the 28 patients compared with the 12 normal controls ( P < 0.01). The relative expression of PCNA protein in the vascular tissues was significantly higher in the experimental group than in the control group. CONCLUSIONS: Down-regulation of gax mRNA and the overexpression of PCNA protein were seen in smooth muscle cells of the splenic vein in patients with portal hypertension, regulating the proliferation, migration and phenoty-pic change and resulting in remodelling of the splenic vein, which may play an important role in the pathogenesis and maintenance of portal hypertension.展开更多
The homocysteine (Hcy)-induced tissue factor (TF) expression in human vascular smooth muscle cells (VSMCs) and the effect of Hcy on the activity of nuclear factor-kappaB (NF-кB) and the expression of inducibl...The homocysteine (Hcy)-induced tissue factor (TF) expression in human vascular smooth muscle cells (VSMCs) and the effect of Hcy on the activity of nuclear factor-kappaB (NF-кB) and the expression of inducible nitric oxide synthase (iNOS) were investigated. Human umbilical artery VSMCs were cultured by tissue explanting method, identified by α-actin immunohistochemistry, and incubated with different concentrations of Hcy/PTDC (NF-кB inhibitor). Semi-quantitative RT-PCR was performed to detect the expression of TF mRNA in VSMCs. Flow cytometry was used to assay the expression of TF protein on the surface of VSMCs and the expression of iNOS in VSMCs. Western blot was carried out to detect the expression of NF-кB protein in nuclei. The results showed that Hcy could induce VSMCs expressing TF mRNA significantly after the VSMCs were incubated with Hcy at concentrations of 10, 100, 500 μmol/L respectively. There was low expression level of TF protein on the surface of the resting VSMCs and Hcy could also induce VSMCs expressing TF pro- tein on the cell surface in different concentrations. Additionally, Hcy could rapidly induce the activation of NF-кB and this effect could be significantly inhibited by PDTC. Hcy alone could not induce the expression of iNOS in VSMCs. It was concluded that Hcy could significantly induce the expression of TF in VSMCs and enhance the activation of NF-ΚB, subsequently mediate TF gene expression and protein synthesis. NF-кB-mediated expression of TF in VSMCs might be the important mechanism of atherosclerosis and thrombosis induced by Hcy.展开更多
Angiotensin Ⅱ (ANGⅡ) plays an important role in the pathogenesis of atherosclerosis by inducing proliferation of vascular smooth muscle cells (VSMCs).In our study,we observed the effects of valsartan on proliferatio...Angiotensin Ⅱ (ANGⅡ) plays an important role in the pathogenesis of atherosclerosis by inducing proliferation of vascular smooth muscle cells (VSMCs).In our study,we observed the effects of valsartan on proliferation of cultured VSMCs treated with or without ANGⅡ by cell counting and methyl thiazolyl tetrazolium (MTT) assay,and detected the expression of mitofusin 2 (Mfn2),a newly discovered cell proliferation inhibitor and a related cell proliferation signaling pathway pro-tein by Western blotting.ANGⅡ at a concentration of 10-6 mol/L significantly stimulated VSMCs proliferation,down-regulated the expression of Mfn2 and upregulated the expression of Raf and ERK1/2.Valsartan inhibited such effects of ANGⅡ at concentrations of 10-5 and 10-6 mol/L,but not at 10-7 mol/L.Valsartan had no significant effect on the proliferation of untreated VSMCs.These results suggest that valsartan inhibits ANGⅡ-induced proliferation of VSMCs in vitro via Mfn2-Ras-Raf-ERK/MAPK signaling pathway.展开更多
Objective: To observe the effect of Yangxueqingnao particles on rat vascular smooth muscle cell (VSMC) prolif- eration induced by lysophosphatidic acid (LPA). Methods: The amount of 3H-TdR (3H-thymidine) admixed in cu...Objective: To observe the effect of Yangxueqingnao particles on rat vascular smooth muscle cell (VSMC) prolif- eration induced by lysophosphatidic acid (LPA). Methods: The amount of 3H-TdR (3H-thymidine) admixed in cultured rat VSMC was measured and mitogen-activated protein kinase (MAPK) activity and lipid peroxidation end product malondialdehyde (MDA) content of the VSMC were assayed. Results: 1×10?9, 1×10?8, 1×10?7 mol/L LPA in a concentration dependent manner, induced the amount of 3H-TdR admixed, MAP kinase activity, and MDA content of the cultured rat VSMC to increase. However, 5%, 10%, and 15% Yangxueqingnao serum preincubation resulted in a decrease of 23.0%, 42.0%, and 52.0% (P<0.01) respectively in the amount of 3H-TdR admixed, a decline in VSMC MAP kinase activity of 13.9% (P<0.05), 29.6% (P<0.01), and 48.9% (P<0.01) respectively, and also, a decrease in MDA content of VSMC of 19.4%, 24.7%, and 43.2% (P<0.01) respectively, in the 1×10?7 mol/L LPA-treated VSMC. Conclusions: LPA activates the proliferation and lipid peroxidation of VSMC in a concentration dependent manner. The LPA-induced VSMC proliferation is related to the activity of MAP kinases, enzymes involved in an intracellular signalling pathway. The results of the present study showed that Yangxueqingnao particles can effectively inhibit LPA-induced VSMC proliferation, MAP kinase activation, and reduce lipid peroxidative lesion.展开更多
文摘Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including functioning as a growth factor, and as a contractile hormone, among others. The aim of this work was to examine the impact of Ang II on the expression and function of α<sub>1</sub>-adrenergic receptors (α<sub>1</sub>-ARs) in cultured rat aorta, and aorta-derived smooth muscle cells. Isolated Wistar rat aorta was incubated for 24 h in DMEM at 37˚C, then subjected to isometric tension and to the action of added norepinephrine, in concentration-response curves. Ang II was added (1 × 10<sup>−5</sup> M), and in some experiments, 5-Methylurapidil (α<sub>1A</sub>-AR antagonist), AH11110A (α<sub>1B</sub>-AR antagonist), or BMY-7378 (α<sub>1D</sub>-AR antagonist), were used to identify the α<sub>1</sub>-AR involved in the response. Desensitization of the contractile response to norepinephrine was observed due to incubation time, and by the Ang II action. α<sub>1D</sub>-AR was protected from desensitization by BMY-7378;while RS-100329 and prazosin partially mitigated desensitization. In another set of experiments, isolated aorta-derived smooth muscle cells were exposed to Ang II and α<sub>1</sub>-ARs proteins were evaluated. α<sub>1D</sub>-AR increased at 30 and 60 min post Ang II exposure, the α<sub>1A</sub>-AR diminished from 1 to 4 h, while α<sub>1B</sub>-AR remained unchanged over 24 h of Ang II exposure. Ang II induced an increase of α<sub>1D</sub>-AR at short times, and BMY-7378 protected α<sub>1D</sub>-AR from desensitization.
基金Supported by the Chinese National Natural Science Foundation(30400596)The Jinan University Natural Science Foundation(51204017)The Science and Technology Innovation Project for Undergraduates of Jinan University(CX07080)
文摘The aim of this study was to establish a method of isolating and culturing smooth muscle cells from the ductus deferens of rats. Smooth muscle cells were prepared from ductus deferens by explanting technique after dissection of adventitia and intimae, and cultured in vitro. The identification of the smooth muscle cells were verified by using anti u-smooth muscle actin (a-SMA) immunohistochemistry studies. The result suggested that the cells are multi-morphous, showing long fusiform or star shapes. The apophysis of cells contacted and coalesced to each other, in some regions the cells overlapped in multilayer, while in the other regions they formed monolayer that fluctuated and showed a "peak-valley" shape. They presented a positive reaction through immunohistochemistry studies. The purity of the cells was more than 99% through this method. The culturing of smooth muscle cells by explanting technique is simple and stable.
文摘The effects of sodium ferulate(SF), a water-soluble element of Chinese medicine Angelica sinensis diels, on cell-mediated oxidative modification of human low density lipoprotein(LDL) and proliferation of rabbit aortic smooth muscle cells(SMCs) were investigated. Using experimental models of proliferation of cultured rabbit aortic SMCs induced by oxidized LDL(ox-LDL), the extent of oxidation was determined by thiobarbituric acid reactive substances(TBARS) method, MTT colorimetry and 3H-thymidine(3H-TdR) incorporation were used to observe proliferation of SMCs. It showed that SF effectively inhibited cell-mediated oxidation induced by Cu2+ in a concentration-dependent manner. At the final concentration of 40, 80, 120 gmL-1, SF could significantly inhibit 3H-TdR incorporation and cell Proliferation in a dose-dependent manner. The results indicated that SF could, in vitro protect LDL against oxidative modification and inhibit the proliferation of SMC, which might be due to its free radical scavenging capacity.
文摘Objective: To investigate the effect of intravascular in radiation on thearterial wall smooth muscle cells (SMCs) proliferation and apoptosis after iliac artery bollominjury in figs. Methods: Twenty-seven miniature figs were divided into three groups. All pigsunderwent iliac artery balloon over-stretch. An^(192) Ir source through afterloader was positionedat the injuried segments to give 10 Gy in 9 pigs and 20 Gy in the other 9 pigs, and the rest 9 pigswere, used as control group. The pigs were killed on the 3rd, 10th and 28th days respectively forobservation. The injured segments were processed to examine SMCs proliferation by proliferation cellnuclear antigen (PCNA) and apopto-sis by terminal deoxynucleotidyl transferase-mediated dUTPnick-end labeling (TUNEL). Results: PC-NA index analysis has some that SMCs proliferation inneointima was significantly inhibited in irradiation group on the 10th and 28th days. The value forintimal SMCs apoptosis in control vs 10 Gy and 20 Gy irradiation groups were: (1. 185+-0. 49)% vs(2. 27+-0. 49)%(P>0. 05) and (1. 85+-0. 49)% vs (2. 53+-0. 45)%(P<0. 05), at the 10th day; (1.61+-0. 35)% vs (3. 11+-0. 51)%(P<0. 05), and (1.61+-0. 35)% vs (7. 05+-1. 82)% (P<0. 05), on the28th day. In irradiated arteries, the maximal incidence of intimal SMCs apoptosis was (7. 05+--1.82)% in 20 Gy group vs (3. 11+-0. 51)% in 10 Gy group (P<0. 05), on the 28th day. In the same doseirradiation group, the incidence of intimal SMCs apoptosis was higher on the 28th day than that onthe 10th day. Conclusion: Intra-arterial gamma irradiation can inhibit intimal SMCs proliferationand stimulate SMCs apoptosis in balloon-in jured arteries. These may be contributive to preventionof restenosis of arteries after balloon injury.
基金National Natural Science Foundation of China(No.30170368)
文摘Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter was constructed by reporter gene system and was transiently transfected into VSMCs and THP-1 in vitro. The promoter activity was tested by luciferase activity with or without LPS and Ang Ⅱ stimulation, before and after different dosage of As2O3 treatment. Results 1. TNF-α promoter effectively expressed in VSMCs and THP-1 compared with CMV promoter (58.3% and 80.9%, respectively). Both LPS and Ang Ⅱ significantly up-regulated TNF-α promoter activity (P〈0.05). 2. As2O3 significantly inhibited, both intact and LPS/Ang Ⅱ stimulated promoter activity, in a dose dependent manner (P〈0.05), and in both cell type. Conclusion These results manifested that, the inhibition effect of As2O3 on the activity of human TNF-α promoter indicated its potential inhibition on pro-inflammatory cytokine genes expression at transcriptional level and its potential anti-inflammatory property in the cardiovascular system.
文摘Objective: This study aims to investigate the effects of urocortin (Ucn) on the viability of endothelial cells (ECV304) and rat vascular muscle cells (VSMC). Methods: Rat aortic VSMC were isolated from the rats' thoracic aorta. We studied the effect of Ucn on the viability of ECV304 cells and VSMC by using a tetrazolium (MTT) assay.Results: Ucn (10 -7 mol/L) inhibited the viability of ECV304 cells and VSMC. Inhibition rates are 13% and 15%, respectively(P<0.05, compared with Control). This inhibition was not dependent on the affecting time and was not affected by the addition of ATP-sensitive potassium channel (KATP channel) blocker, glybenclamide (Gly, 10 mol/L). Conclusion: Ucn inhibits the viability of ECV304 and VSMC. Our results suggest that Ucn may be a new vasoactive agent and may have a beneficial effect in the process of vascular remodeling (VR).
文摘\ The effects of tetrandrine (Tet) on cytosolic free calcium ([Ca2+]i) in subcultured bovine aortic smooth muscle cells (SMC) were studied by Fura2 and ARCMMIC cation measurement system. Tet (1~100 μmol·L-1) had no effect on the resting [Ca2+]i, but had inhibitory effects on [Ca2+]i elevation induced by high K+, 5HT, ATP, Ang II and NE in the presence of extracellular Ca2+. High concentration of Tet also inhibited Pheinduced [Ca2+]i elevation in absence of extracellular Ca2+. Tet (1~100 μmol·L-1) inhibited KCl (60 mmol·L-1) induced [Ca2+]i elevation in dosedependent manner, the IC50 value was 9.2 (95% confidence limits: 5.7~14.9) mmol·L-1. The results suggested that Tet had blocking effects on both VOC and ROC in bovine aortic SMC. It appears that the mechanisms of blocking effect of Tet on ROC might be primarily due to its Ca2+ entry blocking effects.
基金This work was kindly supported by Na-tional Natural Science Foundation of China(No.39670308)
文摘To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.
基金Acknowledgment We are grateful to Dr Tamotsu Yoshimori for providing the GFP-LC3 plasmid and Dr H. Seimiya for providing the tankyrase 1 plasmid. This study was supported by the National Natural Science Foundation of China (No. 30772285) and Beijing Municipal Commission of Science Technology, China (No. Z080507030808011).
文摘This study compared tankyrase 1 expression and autophagy quantity between erectile dysfunction (ED) and non-ED rats' corpus cavernosum smooth muscle cells (CSMCs). This study aslo explored the effect and possible mechanism of tankyrase 1 on autophagy and cell proliferation in ageing ED rats' CSMCs. The intracavernous pres- sure and mean systemic arterial pressure were measured to investigate erectile function so that eight 24-month-old ED and eight 8-month-old male Wistar rats were choosed respectively. The rat CSMCs were isolated and cultured by enzyme digestion, in which tankyrase 1 expression and autophagy quantity were compared. Tankyrase 1 over-expression was induced with plasmid transfection by Lipofectamine^TM. The effect of tankyrase 1 overexpression on proliferation, autophagy and mTOR pathway in 24-month-old ED rats' CSMCs was measured by the cell growth curve in MTT assay, cell cycle analysis in flow cytometry (FCM), key protein expression in Western blot, autophagy quantity in transmission electron microscopy, monodansylcadaverine staining and GFP-LC3 fluorescence. The primary CSMCs were confirmed by immunofluorescence, and the purity was 99.1% in FCM. Compared with that of 8-month-old rats, tankyrase 1 expression and autophagy quantity significantly decreased in 24-month-old ED rats' primary CSMCs (P 〈 0.01). Tankyrase 1 overexpression significantly increased the growth rate (P 〈 0.05) and increased the S phase of cell cycle (P 〈 0.01). The autophagosome quantity was remarkably increased (P 〈 0.01), LC3-Ⅰ/Ⅱ and Beclin 1 were upregulated (P 〈 0.01 and P 〈 0.05), and p-p70S6K (Thr389) was downregulated in 24-month-old ED rat CSMCs (P 〈 0.05). In conclusion, Tankyrase 1 and autophagy decrease in the CSMCs from aging rats with ED, and tankyrase 1 may have a positive effect on proliferation by enhancing autophagy and regulating the mTOR signalling pathway.
基金We are grateful to Dr Guan KL (Moore's Cancer Center, La Jolla, CA, USA) for the gift of pCMV-MEKca. This study was supported by the National Natural Science Foundation of China (30770787 and 90919035), the National Basic Research Program of China (2005CB523301), and the International Cooperation in Science and Technology Projects (2006DFB32460) and the Hebei Province Natural Science Foundation (C2007000831).
文摘The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of atherosclerotic lesions. Baicalin, an herb-derived flavonoid compound, has been previously shown to induce apoptosis and growth inhibition in cancer cells through multiple pathways. However, the potential role of baicalin in regulation of VSMC proliferation and prevention of cardiovascular diseases remains unexplored. In this study, we show that pretreatment with baicalin has a dose-dependent inhibitory effect on PDGF-BB-stimulated VSMC pro- liferation, accompanied with the reduction of proliferating cell nuclear antigen (PCNA) expression. We also show that baicalin-induced growth inhibition is associated with a decrease in cyclin E-CDK2 activation and increase in p27 level in PDGF-stimulated VSMCs, which appears to be at least partly mediated by blockade of PDGF recep- tor [~ (PDGFR~)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. In addition, baicalin was also found to inhibit adhesion molecule expression and cell migration induced by PDGF-BB in VSMCs. Furthermore, using an animal carotid arterial balloon-injury model, we found that baicalin significantly inhibited neointimal hyperplasia. Taken together, our results reveal a novel function of baicalin in inducing growth arrest of PDGF-stimulated VSMCs and suppressing neointimal hyperplasia after balloon injury, and suggest that the underlying mechanism involves the inhibition of cyclin E-CDK2 activation and the increase in p27 accumulation via blockade of the PDGFR^-ERK1/2 signaling cascade.
基金supported by a grant from the Science and Technology Foundation of Hubei Province (No.2006AA-301C18)
文摘To investigate the influence of osteopontin (OPN) short hairpin RNA (shRNA) on the proliferation and activity of rat vascular smooth muscle cells (VSMCs), the expressing vector of shRNA targeting OPN was constructed and transferred into the rat VSMCs. After amplification and purification, pGenesil-1/OPNshRNA1 (PG1), pGenesil-1/OPNshRNA2 (PG2) and pGenesil-1/OPNshRNAHK (PGH) were transfected into the cultured rat VSMC by LipofectamineTM 2000. Transfected cells were visualized by using an inverted fluorescent microscope. VSMCs transfected by optimal recombined plasmid was selected by culturing in G418 48 h later. Nude cells and cells transfected by PGH were used as control. The expression levels of OPN mRNA and protein were assayed by RT-PCR and Western blotting. The OPN of VSMCs was suppressed by transfection of optimal recombined plasmid, and the changes in cell proliferation, adhesion and motility were evaluated by MTT, adhesion test and transwell chamber test. Levels of type I and Ⅲ collagen were measured with ELISA kit. Our results showed that VSMCs stably transfected by OPN shRNA accounted for over 50% of total cells. OPN mRNA and protein were reduced by 81% and 67% (P〈0.01) by PG1, 73% and 52% (P〈0.01) by PG2, respectively while no change was found in PGH and non-treated VSMCs. PG1 significantly suppressed the proliferation, adhesion, mobility of VSMCs and reduced the amount of type Ⅰ and Ⅲ collagen. It is concluded that recombinant plasmid can be success-fully transfected into VSMCs by LipofectamineTM 2000 and inhibit the expression of OPN. The proliferation, adhesion and mobility of VSMCs can be inhibited by knocking down OPN expression. Moreover, the transferring capability of cells is attenuated, and the secretion of type Ⅰ and Ⅲ collagen is inhibited aftter knocking-down of OPN expression. The study provides experimental evidence for clinical prevention of restenosis after percutaneous coronary intervention (PCI) by RNA interference (RNAi) technology.
基金This research was supported by Economic & Trade Commission of Zhejiang Province, the Key Laboratory of Chinese Medicine Screening, Exploitation & Medicinal Effectiveness Appraisal for Cardio-cerebral Vascular & Nervous System of Zhejiang Province and the Key Laboratory for Biomedical Engineering of the National Ministry of Education, China.
文摘Objective To investigate the effects of saponins from Anemarrhena asphodeloides Bunge (SAaB) (Botanical Name: Anemarrhena Asphodeloidis Rhizoma) on the growth of vascular smooth muscle cells (VSMCs). Methods Cell proliferation was measured by a newly developed cell proliferation reagent, WST-1. Cell apoptosis was assayed by flow cytometry through detecting annexin V. Nitric oxide production was evaluated using confocal laser scanning microscopy with diaminofluorescein diacetate (DAF-2, DA). Cell aldose reductase (AR) activity, as well as the effect of Epalrestat and interleukin-1β were also explored. Results WST assay showed that cell proliferation induced by serum was significantly inhibited by SAaB (P〈0.01). Flow cytometry analysis revealed that SAaB could enhance apoptotic rate of VSMCs (P〈0.01). Nitric oxide production was significantly enhanced after administration of SAaB and interleukin-Iβ Moreover, AR activity of VSMCs was also remarkably inhibited by both SAaB and Epalrestat (P〈 0.01). Conclusion SAaB can inhibit proliferation and enhance apoptosis of VSMCs. It may protect vascular cells by inhibiting VSMC proliferation and augmenting apoptotic rate of VSMCs via NO-dependent pathway.
文摘Summary: The main pathogenesis of saphenous vein graft neointimal hyperplasia after coronary artery bypass grafting (CABG) is inflammation-caused migration and proliferation of vascular smooth muscle cells (VSMCs). Janus kinase 2/signal transducer and activators of transcription 3 (JAK2/STAT3) path- way is an important signaling pathway through which VSMCs phenotype conversion occurs. Suppressor of cytokine signaling 3 (SOCS3) is the classic negative feedback inhibitor of JAK2/STAT3 pathway. Growing studies show that SOCS3 plays an important anti-inflammatory role in numerous autoimmune diseases, inflammatory diseases and inflammation-related tumors. However, the effect and mechanism of SOCS3 on vein graft disease is unclear. The purpose of this study was to investigate the effects of SOCS3 on the inflammation, migration and proliferation of VSMCs in vitro and the mechanism. The small interference RNA plasmid targeting rat SOCS3 (SiRNA-rSOCS3) and the recombinant adenovirus vector carrying rat SOCS3 gene (pYrAd-rSOCS3) were constructed, and the empty plamid (SiRNA-control) and vector (pYrAd-GFP) only carrying GFP reported gene were constructed as control. The rat VSMCs were cultured. There were two large groups of A (SOCS3 up-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+pYrAd-rSOCS3 group, IL-6/IFN-γ+pYrAd-GFP group; and B (SOCS3 down-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+SiRNA-rSOCS3 group and IL-6/IFN -T+SiRNA-control group. The pYrAd-rSOCS3 and SiRNA-rSOCS3 were transfected into VSMCs in- duced by IL-6/IFN-γ. After 24 h, real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were used to detect the mRNA and protein expression of SOCS3, STAT3 (only by Western blotting), P-STAT3 (only by Western blotting), IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1. The MTT, Transwell assay and flow cytometry were used to examine VSMCs proliferation, migration and cell cycle progression, respectively. As compared with control group, the mRNA and protein expression of SOCS3, STAT3, P-STAT3, IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly up-regulated in VSMCs stimulated by IL-6/IFN-γ. However, in VSMCs transfected with pYrAd-rSOCS3 before stimulation with IL-6/IFN-γ, the expression of SOCS3 mRNA and protein was further up-regulated, and that of STAT3, P-STAT3, IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly down-regulated as compared with IL-6/IFN-γ group and IL-6/IFN-γ+pYrAd-GFP group. The expression of those re- lated-cytokines in IL-6/IFN-γ+SiRNA-rSOCS3 group was markedly increased as compared with IL-6/IFN-γ group and IL-6/IFN-γ+SiRNA-control group. The absorbance (A) values, the number of cells migrating to the lower chamber, and percentage of cells in the G2/M+S phase were increased in VSMCs stimulated by IL-6/IFN-γ. In VSMCs incubated with pYrAd-rSOCS3 or SiRNA-rSOCS3 be- fore IL-6/IFN-γ stimulation, the A values, the number of cells migrating to the lower chamber, and the percentage of cells in the G2/M+S phase were significantly decreased, and increased respectively. These results imply that IL-6/IFN-γ, strong inflammatory stimulators, can promote transformation of VSMCs phenotype form a quiescent contractile state to a synthetic state by activating JAK2/STAT3 pathway. Over-expresssed SOCS3 might inhibit pro-inflammatory effect, migration and growth of VSMCs by blocking STAT3 activation and phosphorylation. These data in vitro confirm that SOCS3 may play a negatively regulatory role in development and progression of vein graft failure. These conclusions can provide a novel strategy for clinical treatment of vein graft diseases and a new theoretic clue for related drug development.
基金supported by the National Natural Science Foundation of China (No.30971319)the "Six Talent Peak" Project of Jiangsu Province (No.08-B)the grant from Open Project Program of the Key Disciplines of the Public Health Department of Jiangsu Province (No. XK13_200902)
文摘Iptakalim is a new ATP-sensitive potassium (KATp) channel opener, and it inhibits the proliferation of pulmonary arterial smooth muscle cells (PASMCs) and pulmonary vascular remodeling. However, the underlying mechanism remains unclear. In the present study, we found that iptakalim significantly decreased pulmonary artery pressure, inhibited pulmonary ariery remodeling and PKC-α overexpression in chronic hypoxia in a rat pulmonary hypertension model. Iptakalim reduced hypoxia-induced expression of PKC-α, and abolished the effect of hypoxia on PASMC proliferation significantly in a dose-dependent manner in vitro. Moreover, these effects were abol- ished by glibenclamide, a selective KArp channel antagonist. These results indicate that iptakalim inhibits PASMC proliferation and pulmonary vascular remodeling induced by hypoxia through downregulating the expression of PKC-α. Iptakalim can serve as a novel promising treatment for hypoxic pulmonary hypertension.
基金This project was supported by a grant from Provincial Outstanding Youth Program for Henan Province Committee of Sciences and Technology (No. 19972002).
文摘The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL was isolated and purified from human plasma. Ox-LDL was produced from LDL by being incubated with CuSO4. ox-LDL was then added to the culture medium at different concentrations (35, 60, 85, 110, 135 and 160μg/mL) for 7 days. The influence of ox-LDL on vSMC proliferation was observed in growth curve, mitosis index, and in situ determination of apoptosis. The data were analyzed with SPSS 10.0 software. The results showed that the ox-LDL produced in vitro had a good purity and optimal oxidative degree, which was similar to the intrinsic ox-LDL in atherosclerotic plaque, ox-LDL at a concentration of 35 μg/mL demonstrated the strongest proliferation inducement, and at a concentration of 135 μg/mL, ox-LDL could inhibit the growth of vSMC. ox-LDL at concentrations of 35 and 50 μg/mL presented powerful mitotic trigger, and with the increase of ox-LDL concentration, the mitotic index of vSMC was decreased gradually, ox-LDL at higher concentrations promoted more apoptotic vSMCs, ox-LDL at lower concentrations triggered proliferation of vSMCs, and at higher concentrations induced apoptosis in vSMCs, ox-LDL played a promotional role in the pathogenesis and development of atherosclerosis by affecting vSMC proliferation and apoptosis.
基金supported by the grant from National Natural Science Foundation of China(81160020,81460042,81460070)Key Project of Chinese Ministry of Education 212137+2 种基金the gtants HJHZ2013.06 and SF201417 of Hainan ProvinceKey Program of Science and Tcchnology of Hainan Province(ZDXM20100045)partly by Programs for Changjiang Scholars and Innovative Research Team in University(IRT1119)
文摘Objective:To explore effect of high glucose on expression of osteoprotegerin(OPG) and receptor activator of NF- κB ligand(RANKL) in rat aortic vascular smooth muscle cells.Methods:SD rats were intraperitoneally injected with streptozotocin,OPG and RANKL expression in rat thoracic aortas were detected by immunohistochemical staining.In cultured vascular smooth muscle cells(VSMCs)(A7r5),qRT-PCR and Western blot analysis were used to examine the mRNA and protein levels of OPG and RANKL.Results:Our results demonstrated that OPG expression was increased in hyperglycemic rat aortic VSMCs.while RANKL expression was decreased.Besides,in vitro experiments high glucose induced OPG expression,but depressed RANKL expression by dose- and time-dependent manner in cultured A7r5.Conclusions:Our findings suggested that high glucose could promote the expression of OPG,and inhibit the expression of RANKL in VSMCs,which may be partly be the molecular mechanism of diabetic vascular calcification.
基金This project was supported by grants from the National Natural Science Foundation of China (No. 30170920)and the Natural Science Foundation of Education Department of Fujian Province (No. JA03100).
文摘BACKGROUND: The expression of gax, an anti-prolifera-tive homeobox gene, is rapidly down-regulated in vascular smooth muscle cells (VSMCs) following arterial injury. Whether the down-regulation of gax is involved in modulating the proliferation of smooth muscle cells of the splenic vein in patients with portal hypertension has not yet been elucidated. The aim of this study was to investigate the expression of the mRNA of the gax gene in smooth muscle cells of the splenic vein in patients with portal hypertension. METHODS: Reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect the expression of gax mRNA and immunohistochemistry staining was performed to demonstrate the expression of PCNA protein in the splenic veins of 28 patients with portal hypertension and those of 12 normal controls. This study was approved by the Institutional Ethics Committee and informed consent was obtained from all participants. RESULTS: RT-PCR showed that the expression of gax mRNA was PCNA-positive and negative in the splenic vein of patients with portal hypertension (1.08 ± 0.04 and 1.39 ± 0.27, respectively). There was a significant difference in the 28 patients compared with the 12 normal controls ( P < 0.01). The relative expression of PCNA protein in the vascular tissues was significantly higher in the experimental group than in the control group. CONCLUSIONS: Down-regulation of gax mRNA and the overexpression of PCNA protein were seen in smooth muscle cells of the splenic vein in patients with portal hypertension, regulating the proliferation, migration and phenoty-pic change and resulting in remodelling of the splenic vein, which may play an important role in the pathogenesis and maintenance of portal hypertension.
文摘The homocysteine (Hcy)-induced tissue factor (TF) expression in human vascular smooth muscle cells (VSMCs) and the effect of Hcy on the activity of nuclear factor-kappaB (NF-кB) and the expression of inducible nitric oxide synthase (iNOS) were investigated. Human umbilical artery VSMCs were cultured by tissue explanting method, identified by α-actin immunohistochemistry, and incubated with different concentrations of Hcy/PTDC (NF-кB inhibitor). Semi-quantitative RT-PCR was performed to detect the expression of TF mRNA in VSMCs. Flow cytometry was used to assay the expression of TF protein on the surface of VSMCs and the expression of iNOS in VSMCs. Western blot was carried out to detect the expression of NF-кB protein in nuclei. The results showed that Hcy could induce VSMCs expressing TF mRNA significantly after the VSMCs were incubated with Hcy at concentrations of 10, 100, 500 μmol/L respectively. There was low expression level of TF protein on the surface of the resting VSMCs and Hcy could also induce VSMCs expressing TF pro- tein on the cell surface in different concentrations. Additionally, Hcy could rapidly induce the activation of NF-кB and this effect could be significantly inhibited by PDTC. Hcy alone could not induce the expression of iNOS in VSMCs. It was concluded that Hcy could significantly induce the expression of TF in VSMCs and enhance the activation of NF-ΚB, subsequently mediate TF gene expression and protein synthesis. NF-кB-mediated expression of TF in VSMCs might be the important mechanism of atherosclerosis and thrombosis induced by Hcy.
基金supported by grants from the National Natural Science Foundation of China (No. 30872714 and No.30971244)
文摘Angiotensin Ⅱ (ANGⅡ) plays an important role in the pathogenesis of atherosclerosis by inducing proliferation of vascular smooth muscle cells (VSMCs).In our study,we observed the effects of valsartan on proliferation of cultured VSMCs treated with or without ANGⅡ by cell counting and methyl thiazolyl tetrazolium (MTT) assay,and detected the expression of mitofusin 2 (Mfn2),a newly discovered cell proliferation inhibitor and a related cell proliferation signaling pathway pro-tein by Western blotting.ANGⅡ at a concentration of 10-6 mol/L significantly stimulated VSMCs proliferation,down-regulated the expression of Mfn2 and upregulated the expression of Raf and ERK1/2.Valsartan inhibited such effects of ANGⅡ at concentrations of 10-5 and 10-6 mol/L,but not at 10-7 mol/L.Valsartan had no significant effect on the proliferation of untreated VSMCs.These results suggest that valsartan inhibits ANGⅡ-induced proliferation of VSMCs in vitro via Mfn2-Ras-Raf-ERK/MAPK signaling pathway.
基金Project (No. 491010-W50339) supported by Chinese Traditional Medicine Administration Bureau of Zhejiang Province, China
文摘Objective: To observe the effect of Yangxueqingnao particles on rat vascular smooth muscle cell (VSMC) prolif- eration induced by lysophosphatidic acid (LPA). Methods: The amount of 3H-TdR (3H-thymidine) admixed in cultured rat VSMC was measured and mitogen-activated protein kinase (MAPK) activity and lipid peroxidation end product malondialdehyde (MDA) content of the VSMC were assayed. Results: 1×10?9, 1×10?8, 1×10?7 mol/L LPA in a concentration dependent manner, induced the amount of 3H-TdR admixed, MAP kinase activity, and MDA content of the cultured rat VSMC to increase. However, 5%, 10%, and 15% Yangxueqingnao serum preincubation resulted in a decrease of 23.0%, 42.0%, and 52.0% (P<0.01) respectively in the amount of 3H-TdR admixed, a decline in VSMC MAP kinase activity of 13.9% (P<0.05), 29.6% (P<0.01), and 48.9% (P<0.01) respectively, and also, a decrease in MDA content of VSMC of 19.4%, 24.7%, and 43.2% (P<0.01) respectively, in the 1×10?7 mol/L LPA-treated VSMC. Conclusions: LPA activates the proliferation and lipid peroxidation of VSMC in a concentration dependent manner. The LPA-induced VSMC proliferation is related to the activity of MAP kinases, enzymes involved in an intracellular signalling pathway. The results of the present study showed that Yangxueqingnao particles can effectively inhibit LPA-induced VSMC proliferation, MAP kinase activation, and reduce lipid peroxidative lesion.