BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is associated with obesity,insulin resistance and dyslipidaemia and currently is estimated to affect up to a third of all individuals in developed countries.Current s...BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is associated with obesity,insulin resistance and dyslipidaemia and currently is estimated to affect up to a third of all individuals in developed countries.Current standard of care for patients varies according to disease stage,but includes lifestyle interventions common insulin sensitizers,antioxidants and lipid modifiers.However,to date specific therapies have shown little histological or fibrosis stage improvement in large clinical trials,and there is still no licensed therapy for NAFLD.Given the high prevalence,limited treatment options and significant screening costs for the general population,new treatments are urgently required.AIM To assess the potential for inhibition of the amine oxidase enzyme vascular adhesion protein-1(VAP-1)to modify hepatic lipid accumulation in NAFLD.METHODS We have used immunochemical and qPCR analysis to document expression of VAP-1 and key functional proteins and transporters across the NAFLD spectrum.We then utilised hepatocytes in culture and human precision cut liver slices in concert with selective enzyme activity inhibitors to test the effects of activating the semicarbazide-sensitive amine oxidase activity of VAP-1 on hepatic lipid uptake and triglyceride export.A murine model of NAFLD was also used to determine the consequences of VAP-1 knockout and gene expression arrays were used to quantify the effects of VAP-1 activity on key lipid modifying and proinflammatory gene expression.RESULTS We confirmed that increasing severity of NAFLD and progression to cirrhosis was associated with a significant increase in hepatocellular VAP-1 expression.Hepatocytes in vitro exposed to recombinant VAP-1 and its substrate methylamine showed increased lipid accumulation as determined by quantification of Oil Red O uptake.This was recapitulated using hydrogen peroxide,and lipid accumulation was accompanied by changes in expression of the lipid transporter molecules FABP3,FATP6,insulin receptor subunits and PPARα.Human liver tissue exposed to recombinant VAP-1 or substrates for endo/exogenous VAP-1 produced less triglyceride than untreated tissue and demonstrated an increase in steatosis.This response could be inhibited by using bromoethylamine to inhibit the SSAO activity of VAP-1,and mice deficient in VAP-1/AOC3 also demonstrated reduced steatosis on high fat diet.Exposure of human liver tissue to methylamine to activate VAP-1 resulted in increased expression of FABP2 and 4,FATP3-5,caveolin-1,VLDLR,PPARGC1 and genes associated with the inflammatory response.CONCLUSION Our data confirm that the elevations in hepatic VAP-1 expression reported in nonalcoholic steatohepatitis can contribute to steatosis,metabolic disturbance and inflammation.This suggests that targeting the semicarbazide sensitive amine oxidase capacity of VAP-1 may represent a useful adjunct to other therapeutic strategies in NAFLD.展开更多
Regulation of the adhesion molecules expression by cytokine in vascular endothelial cells was investigated. Human umbilical vein endothelial cells (HUVEC) were stimulated with cytokines, TNF α (1-250 U/ml) or IL 1...Regulation of the adhesion molecules expression by cytokine in vascular endothelial cells was investigated. Human umbilical vein endothelial cells (HUVEC) were stimulated with cytokines, TNF α (1-250 U/ml) or IL 1β (0.1-50 U/ml) for 24 h. HUVEC were also cultured with cytokines, TNF α (100 U/ml) or IL 1β (10 U/ml), for 4-72 h, cell surface expression of adhesion molecules (ICAM 1 and VCAM 1) were detected and quantitated by immunocytochemical methods and computerized imaging analysis technique. Adhesion molecules expression were up regulated by TNF α, IL 1β in a concentration and time dependent manner. Some significant differences were observed between the effects of cytokines on the ICAM 1 and on VCAM 1 expression. Cytokines might directly induce the expression of ICAM 1 and VCAM 1 in vascular endothelial cells. Our observations indicate differential functions of the two adhesion molecules during the evolution of inflammatory responses in stroke.展开更多
文摘BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is associated with obesity,insulin resistance and dyslipidaemia and currently is estimated to affect up to a third of all individuals in developed countries.Current standard of care for patients varies according to disease stage,but includes lifestyle interventions common insulin sensitizers,antioxidants and lipid modifiers.However,to date specific therapies have shown little histological or fibrosis stage improvement in large clinical trials,and there is still no licensed therapy for NAFLD.Given the high prevalence,limited treatment options and significant screening costs for the general population,new treatments are urgently required.AIM To assess the potential for inhibition of the amine oxidase enzyme vascular adhesion protein-1(VAP-1)to modify hepatic lipid accumulation in NAFLD.METHODS We have used immunochemical and qPCR analysis to document expression of VAP-1 and key functional proteins and transporters across the NAFLD spectrum.We then utilised hepatocytes in culture and human precision cut liver slices in concert with selective enzyme activity inhibitors to test the effects of activating the semicarbazide-sensitive amine oxidase activity of VAP-1 on hepatic lipid uptake and triglyceride export.A murine model of NAFLD was also used to determine the consequences of VAP-1 knockout and gene expression arrays were used to quantify the effects of VAP-1 activity on key lipid modifying and proinflammatory gene expression.RESULTS We confirmed that increasing severity of NAFLD and progression to cirrhosis was associated with a significant increase in hepatocellular VAP-1 expression.Hepatocytes in vitro exposed to recombinant VAP-1 and its substrate methylamine showed increased lipid accumulation as determined by quantification of Oil Red O uptake.This was recapitulated using hydrogen peroxide,and lipid accumulation was accompanied by changes in expression of the lipid transporter molecules FABP3,FATP6,insulin receptor subunits and PPARα.Human liver tissue exposed to recombinant VAP-1 or substrates for endo/exogenous VAP-1 produced less triglyceride than untreated tissue and demonstrated an increase in steatosis.This response could be inhibited by using bromoethylamine to inhibit the SSAO activity of VAP-1,and mice deficient in VAP-1/AOC3 also demonstrated reduced steatosis on high fat diet.Exposure of human liver tissue to methylamine to activate VAP-1 resulted in increased expression of FABP2 and 4,FATP3-5,caveolin-1,VLDLR,PPARGC1 and genes associated with the inflammatory response.CONCLUSION Our data confirm that the elevations in hepatic VAP-1 expression reported in nonalcoholic steatohepatitis can contribute to steatosis,metabolic disturbance and inflammation.This suggests that targeting the semicarbazide sensitive amine oxidase capacity of VAP-1 may represent a useful adjunct to other therapeutic strategies in NAFLD.
文摘Regulation of the adhesion molecules expression by cytokine in vascular endothelial cells was investigated. Human umbilical vein endothelial cells (HUVEC) were stimulated with cytokines, TNF α (1-250 U/ml) or IL 1β (0.1-50 U/ml) for 24 h. HUVEC were also cultured with cytokines, TNF α (100 U/ml) or IL 1β (10 U/ml), for 4-72 h, cell surface expression of adhesion molecules (ICAM 1 and VCAM 1) were detected and quantitated by immunocytochemical methods and computerized imaging analysis technique. Adhesion molecules expression were up regulated by TNF α, IL 1β in a concentration and time dependent manner. Some significant differences were observed between the effects of cytokines on the ICAM 1 and on VCAM 1 expression. Cytokines might directly induce the expression of ICAM 1 and VCAM 1 in vascular endothelial cells. Our observations indicate differential functions of the two adhesion molecules during the evolution of inflammatory responses in stroke.