期刊文献+
共找到6,515篇文章
< 1 2 250 >
每页显示 20 50 100
Analyzing the pharmacological substances and targets of Xuefu Zhuyu decoction in hypertensive vascular endothelial cells
1
作者 Rui-Xue Chen Jing Li +3 位作者 Guo-Zhen Dong Sheng-Yan Qiao Xiao Hu Li-Guo Chen 《Clinical Research Communications》 2024年第1期3-10,共8页
Background:Xuefu Zhuyu decoction(XFZY)could significantly improve the function of hypertensive vascular endothelial cells,but the targets and mechanism are not clear.This study is to analyze the pharmacological substa... Background:Xuefu Zhuyu decoction(XFZY)could significantly improve the function of hypertensive vascular endothelial cells,but the targets and mechanism are not clear.This study is to analyze the pharmacological substances and targets of Xuefu Zhuyu decoction in hypertensive vascular endothelial cells.Methods:This study used Xuefu Zhuyu decoction to intervene human umbilical vein endothelial cells incubated by hypertensive patients’serum,then detected the function of vascular endothelial cells.The aqueous extract of XFZY was analyzed and validated by liquid chromatography-mass spectrometry technology;Finally,macromolecular docking technology was used to analyze the potential active substances and targets of XFZY in the prevention and treatment of hypertension.Results:Compared with the model group,the XFZY group showed a significant increase in NO expression(P<0.01)and a significant decrease in ET-1 expression(P<0.001);and the expression of BIP,P-JNK,CHOP,and BAX in XFZY group cells was significantly decreased(P<0.001),while the expression of JNK and BCL2 was significantly increased(P<0.001).19 main compounds were identified in XFZY and there were 3 pairs of molecular complexes with high affinity for markers of the endoplasmic reticulum stress,including BIP-Hesperidin complex,BIP-HSYA complex and JNK-Naringin complex.Conclusion:This study analyzed the potential pharmacodynamic substance and targets of Xuefu Zhuyu decoction in improving the function of hypertensive vascular endothelial cells,which could provide a scientific basis for the future molecular mechanism of XFZY in treating hypertension. 展开更多
关键词 Xuefu Zhuyu decoction HYPERTENSION vascular endothelial cells pharmacological substances and targets
下载PDF
Anti-vascular endothelial growth factor drugs combined with laser photocoagulation maintain retinal ganglion cell integrity in patients with diabetic macular edema: study protocol for a prospective, non-randomized, controlled clinical trial
2
作者 Xiangjun Li Chunyan Li +5 位作者 Hai Huang Dan Bai Jingyi Wang Anqi Chen Yu Gong Ying Leng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期923-928,共6页
The integrity of retinal ganglion cells is tightly associated with diabetic macular degeneration that leads to damage and death of retinal ganglion cells,affecting vision.The major clinical treatments for diabetic mac... The integrity of retinal ganglion cells is tightly associated with diabetic macular degeneration that leads to damage and death of retinal ganglion cells,affecting vision.The major clinical treatments for diabetic macular edema are anti-vascular endothelial growth factor drugs and laser photocoagulation.However,although the macular thickness can be normalized with each of these two therapies used alone,the vision does not improve in many patients.This might result from the incomplete recovery of retinal ganglion cell injury.Therefore,a prospective,non-randomized,controlled clinical trial was designed to investigate the effect of anti-vascular endothelial growth factor drugs combined with laser photocoagulation on the integrity of retinal ganglion cells in patients with diabetic macular edema and its relationship with vision recovery.In this trial,150 patients with diabetic macular edema will be equally divided into three groups according to therapeutic methods,followed by treatment with anti-vascular endothelial growth factor drugs,laser photocoagulation therapy,and their combination.All patients will be followed up for 12 months.The primary outcome measure is retinal ganglion cell-inner plexiform layer thickness at 12 months after treatment.The secondary outcome measures include retinal ganglion cell-inner plexiform layer thickness before and 1,3,6,and 9 months after treatment,retinal nerve fiber layer thickness,best-corrected visual acuity,macular area thickness,and choroidal thickness before and 1,3,6,9,and 12 months after treatment.Safety measure is the incidence of adverse events at 1,3,6,9,and 12 months after treatment.The study protocol hopes to validate the better efficacy and safety of the combined treatment in patients with diabetic macula compared with the other two monotherapies alone during the 12-month follow-up period.The trial is designed to focus on clarifying the time-effect relationship between imaging measures related to the integrity of retinal ganglion cells and best-corrected visual acuity.The trial protocol was approved by the Medical Ethics Committee of the Affiliated Hospital of Beihua University with approval No.(2023)(26)on April 25,2023,and was registered with the Chinese Clinical Trial Registry(registration number:ChiCTR2300072478,June 14,2023,protocol version:2.0). 展开更多
关键词 choroidal thickness diabetic macular edema laser photocoagulation retinal ganglion cell-inner plexiform layer thickness retinal ganglion cells retinal nerve fiber layer thickness thickness of the macular area vascular endothelial growth factor visual acuity
下载PDF
Integrin binding peptides facilitate growth and interconnected vascular-like network formation of rat primary cortical vascular endothelial cells in vitro
3
作者 Ram Kuwar Xuejun Wen +1 位作者 Ning Zhang Dong Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1052-1056,共5页
Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating im... Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating important function of cells such as survival, growth and development during tissue organization, differentiation and organogenesis. In this study, we used an integrin-binding array platform to identify the important types of integrins and their binding peptides that facilitate adhesion, growth, development, and vascular-like network formation of rat primary brain microvascular endothelial cells. Brain microvascular endothelial cells were isolated from rat brain on post-natal day 7. Cells were cultured in a custom-designed integrin array system containing short synthetic peptides binding to 16 types of integrins commonly expressed on cells in vertebrates. After 7 days of culture, the brain microvascular endothelial cells were processed for immunostaining with markers for endothelial cells including von Willibrand factor and platelet endothelial cell adhesion molecule. 5-Bromo-2′-dexoyuridine was added to the culture at 48 hours prior to fixation to assess cell proliferation. Among 16 integrins tested, we found that α5β1, αvβ5 and αvβ8 greatly promoted proliferation of endothelial cells in culture. To investigate the effect of integrin-binding peptides in promoting neovascularization and angiogenesis, the binding peptides to the above three types of integrins were immobilized to our custom-designed hydrogel in three-dimensional(3 D) culture of brain microvascular endothelial cells with the addition of vascular endothelial growth factor. Following a 7-day 3 D culture, the culture was fixed and processed for double labeling of phalloidin with von Willibrand factor or platelet endothelial cell adhesion molecule and assessed under confocal microscopy. In the 3 D culture in hydrogels conjugated with the integrin-binding peptide, brain microvascular endothelial cells formed interconnected vascular-like network with clearly discernable lumens, which is reminiscent of brain microvascular network in vivo. With the novel integrin-binding array system, we identified the specific types of integrins on brain microvascular endothelial cells that mediate cell adhesion and growth followed by functionalizing a 3 D hydrogel culture system using the binding peptides that specifically bind to the identified integrins, leading to robust growth and lumenized microvascular-like network formation of brain microvascular endothelial cells in 3 D culture. This technology can be used for in vitro and in vivo vascularization of transplants or brain lesions to promote brain tissue regeneration following neurological insults. 展开更多
关键词 3D culture angiogenesis brain microvascular endothelial cells hydrogel INTEGRINS platelet endothelial cell adhesion molecule(PECAM-1) vascular endothelial growth factor(VEGF) vascularIZATION
下载PDF
Inhibition of VEGF-A expression in hypoxia-exposed fetal retinal microvascular endothelial cells by exosomes derived from human umbilical cord mesenchymal stem cells
4
作者 JING LI WANWAN FAN +5 位作者 LILI HAO YONGSHENG LI GUOCHENG YU WEI SUN XIANQIONG LUO JINGXIANG ZHONG 《BIOCELL》 SCIE 2023年第11期2485-2494,共10页
Objective:This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell(hucMSC)-derived exosomes(hucMSC-Exos)in inhibiting hypoxia-induced cell hyper proliferation and overexpression of v... Objective:This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell(hucMSC)-derived exosomes(hucMSC-Exos)in inhibiting hypoxia-induced cell hyper proliferation and overexpression of vascular endothelial growth factor A(VEGF-A)in immature human fetal retinal microvascular endothelial cells(hfRMECs).Methods:Exosomes were isolated from hucMSCs using cryogenic ultracentrifugation and characterized through various techniques,including transmission electron microscopy,nanoparticle tracking analysis,bicinchoninic acid assays,and western blotting.The hfRMECs were identified using von Willebrand factor(vWF)co-staining and divided into four groups:a control group cultured under normoxic condition,a hypoxic model group,a hypoxic group treated with low-concentration hucMSC-Exos(75μg/mL)and a hypoxic group treated with high-concentration hucMSC-Exos(100μg/mL).Cell viability and proliferation were assessed using Cell Counting Kit-8(CCK-8)assay and EdU(5-ethynyl-2′-deoxyuridine)assay respectively.Expression levels of VEGF-A were evaluated using RT-PCR,western blotting and immunofluorescence.Results:Hypoxia significantly increased hfRMECs’viability and proliferation by upregulating VEGF-A levels.The administration of hucMSC-Exos effectively reversed this response,with the high-concentration group exhibiting greater efficacy compared to the lowconcentration group.Conclusion:In conclusion,hucMSC-Exos can dose-dependently inhibit hypoxia-induced hyperproliferation and VEGF-A overexpression in immature fetal retinal microvascular endothelial cells. 展开更多
关键词 Mesenchymal stem cells EXOSOMES Immature fetal retinal vascular endothelial cells vascular endothelial growth factor A HYPOXIA
下载PDF
Ferroptosis inhibition protects vascular endothelial cells and maintains integrity of the blood-spinal cord barrier after spinal cord injury
5
作者 Wenxiang Li Xiaoqing Zhao +12 位作者 Rong Zhang Xinjie Liu Zhangyang Qi Yang Zhang Weiqi Yang Yilin Pang Chenxi Zhao Baoyou Fan Ning Ran Jiawei Zhang Xiaohong Kong Shiqing Feng Xue Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2474-2481,共8页
Maintaining the integrity of the blood-spinal cord barrier is critical for the recove ry of spinal cord injury.Ferro ptosis contributes to the pathogenesis of spinal cord injury.We hypothesized that ferroptosis is inv... Maintaining the integrity of the blood-spinal cord barrier is critical for the recove ry of spinal cord injury.Ferro ptosis contributes to the pathogenesis of spinal cord injury.We hypothesized that ferroptosis is involved in disruption of the blood-s pinal cord barrier.In this study,we administe red the ferroptosis inhibitor liproxstatin-1 intraperitoneally after contusive spinal co rd injury in rats.Liproxstatin-1 improved locomotor recovery and somatosensory evoked potential electrophysiological performance after spinal cord inju ry.Liproxstatin-1 maintained blood-spinal cord barrier integrity by upregulation of the expression of tight junction protein.Liproxstatin-1 inhibited ferroptosis of endothelial cell after spinal cord injury,as shown by the immunofluorescence of an endothelial cell marker(rat endothelium cell antigen-1,RECA-1) and fe rroptosis markers Acyl-CoA synthetase long-chain family member 4 and 15-lipoxygenase.Liproxstatin-1reduced brain endothelial cell ferroptosis in vitro by upregulating glutathione peroxidase 4 and downregulating Acyl-CoA synthetase long-chain family member4 and 15-lipoxygenase.Furthermore,inflammatory cell recruitment and astrogliosis were mitigated after liproxstatin-1 treatment.In summary,liproxstatin-1im proved spinal cord injury recovery by inhibiting ferroptosis in endothelial cells and maintaining blood-s pinal co rd barrier integrity. 展开更多
关键词 blood-spinal cord barrier ferroptosis liproxstatin-1 NEUROINFLAMMATION spinal cord injury vascular endothelial cells
下载PDF
Down-regulation of histone deacetylase 7 reduces biological activities of retinal microvascular endothelial cells under high glucose condition and related mechanism
6
作者 Jia-Yi Ning Han-Yi Yang +2 位作者 Ting-Ke Xie Yi-Xuan Chen Jing Han 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第8期1210-1217,共8页
AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the... AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the retinal tissue in diabetic rats.METHODS:The expression of HDAC7 in HRMECs under high glucose and the retinal tissue from normal or diabetic rats were detected with immunohistochemistry and Western blot.LV-shHDAC7 HRMECs were used to study the effect of HDAC7 on cell activities.Cell count kit-8(CCK-8),5-ethynyl2’-deoxyuridine(EdU),flow cytometry,scratch test,Transwell test and tube formation assay were used to examine the ability of cell proliferation,migration,and angiogenesis.Finally,a preliminary exploration of its mechanism was performed by Western blot.RESULTS:The expression of HDAC7 was both upregulated in retinal tissues of diabetic rats and high glucosetreated HRMECs.Down-regulation of HDAC7 expression significantly reduced the ability of proliferation,migration,and tube formation,and reversed the high glucose-induced high expression of CDK1/Cyclin B1 and vascular endothelial growth factor in high glucose-treated HRMECs.CONCLUSION:High glucose can up-regulate the expression of HDAC7 in HRMECs.Down-regulation of HDAC7 can inhibit HRMECs activities.HDAC7 is proposed to be involved in pathogenesis of diabetic retinopathy and a therapeutic target. 展开更多
关键词 human retinal microvascular endothelial cells histone deacetylase 7 high glucose diabetic rat vascular endothelial growth factor
下载PDF
Knockdown of fibrillin-1 suppresses retina-blood barrier dysfunction by inhibiting vascular endothelial apoptosis under diabetic conditions
7
作者 Yue Zhang Xiao-Jing Liu +8 位作者 Xin-Ran Zhai Yao Yao Bin Shao Yu-Han Zhen Xin Zhang Zhe Xiao Li-Fang Wang Ming-Lian Zhang Zhi-Min Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第8期1403-1410,共8页
AIM:To investigate the effects of fibrillin-1(FBN1)deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions.METHODS:Streptozotocin(STZ)-induc... AIM:To investigate the effects of fibrillin-1(FBN1)deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions.METHODS:Streptozotocin(STZ)-induced diabetic mice were used to simulate the diabetic conditions of diabetic retinopathy(DR)patients,and FBN1 expression was detected in retinas from STZ-diabetic mice and controls.In the Gene Expression Omnibus(GEO)database,the GSE60436 dataset was selected to analyze FBN1 expressions in fibrovascular membranes from DR patients.Using lentivirus to knock down FBN1 levels,vascular leakage and endothelial barrier integrity were detected by Evans blue vascular permeability assay,fluorescein fundus angiography(FFA)and immunofluorescence labeled with tight junction marker in vivo.High glucose-induced monkey retinal vascular endothelial cells(RF/6A)were used to investigate effects of FBN1 on the cells in vitro.The vascular endothelial barrier integrity and apoptosis were detected by trans-endothelial electrical resistance(TEER)assay and flow cytometry,respectively.RESULTS:FBN1 mRNA expression was increased in retinas of STZ-induced diabetic mice and fibrovascular membranes of DR patients(GSE60436 datasets)using RNA-seq approach.Besides,knocking down of FBN1 by lentivirus intravitreal injection significantly inhibited the vascular leakage compared to STZ-DR group by Evans blue vascular permeability assay and FFA detection.Expressions of tight junction markers in STZ-DR mouse retinas were lower than those in the control group,and knocking down of FBN1 increased the tight junction levels.In vitro,30 mmol/L glucose could significantly inhibit viability of RF/6A cells,and FBN1 mRNA expression was increased under 30 mmol/L glucose stimulation.Down-regulation of FBN1 reduced high glucose(HG)-stimulated retinal microvascular endothelial cell permeability,increased TEER,and inhibited RF/6A cell apoptosis in vitro.CONCLUSION:The expression level of FBN1 increases in retinas and vascular endothelial cells under diabetic conditions.Down-regulation of FBN1 protects the retina of early diabetic rats from retina-blood barrier damage,reduce vascular leakage,cell apoptosis,and maintain vascular endothelial cell barrier function. 展开更多
关键词 diabetic retinopathy fibrillin-1 retinablood barrier vascular leakage vascular permeability APOPTOSIS retinal vascular endothelial cells
下载PDF
Advances in the differentiation of pluripotent stem cells into vascular cells
8
作者 Yi-Chang Jiao Ying-Xin Wang +4 位作者 Wen-Zhu Liu Jing-Wen Xu Yu-Ying Zhao Chuan-Zhu Yan Fu-Chen Liu 《World Journal of Stem Cells》 SCIE 2024年第2期137-150,共14页
Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood ve... Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed. 展开更多
关键词 Induced pluripotent stem cell Blood vessels vascular organoids endothelial cells Smooth muscle cells PERICYTES Tissue engineering vascular graft
下载PDF
Overexpression of vascular endothelial growth factor enhances the neuroprotective effects of bone marrow mesenchymal stem cell transplantation in ischemic stroke 被引量:2
9
作者 Cui Liu Zhi-Xiang Yang +6 位作者 Si-Qi Zhou Ding Ding Yu-Ting Hu Hong-Ning Yang Dong Han Shu-Qun Hu Xue-Mei Zong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1286-1292,共7页
Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endot... Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endothelial growth factor(VEGF)on behavioral defects in a rat model of transient cerebral ischemia,which was induced by middle cerebral artery occlusion.VEGF-BMSCs or control grafts were injected into the left striatum of the infarcted hemisphere 24 hours after stroke.We found that compared with the stroke-only group and the vehicle-and BMSCs-control groups,the VEGF-BMSCs treated animals displayed the largest benefits,as evidenced by attenuated behavioral defects and smaller infarct volume 7 days after stroke.Additionally,VEGF-BMSCs greatly inhibited destruction of the blood-brain barrier,increased the regeneration of blood vessels in the region of ischemic penumbra,and reducedneuronal degeneration surrounding the infarct core.Further mechanistic studies showed that among all transplant groups,VEGF-BMSCs transplantation induced the highest level of brain-derived neurotrophic factor.These results suggest that BMSCs transplantation with vascular endothelial growth factor has the potential to treat ischemic stroke with better results than are currently available. 展开更多
关键词 bone marrow mesenchymal stem cell brain-derived neurotrophic factor CD31 microtubule associated protein 2 middle cerebral artery occlusion stroke transplantation vascular endothelial growth factor
下载PDF
β-Estradiol 17-acetate enhances the in vitro vitality of endothelial cells isolated from the brain of patients subjected to neurosurgery 被引量:1
10
作者 Sonia Guzzo Pasquale De Bonis +1 位作者 Barbara Pavan Luciano Fadiga 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期389-395,共7页
In the current landscape of endothelial cell isolation for building in vitro models of the blood-brain barrier,our work moves towards reproducing the features of the neurovascular unit to achieve glial compliance thro... In the current landscape of endothelial cell isolation for building in vitro models of the blood-brain barrier,our work moves towards reproducing the features of the neurovascular unit to achieve glial compliance through an innovative biomimetic coating technology for brain chronic implants.We hypothesized that the autologous origin of human brain mic rovascular endothelial cells(hBMECs)is the first requirement for the suitable coating to prevent the glial inflammato ry response trigge red by foreign neuroprosthetics.Therefo re,this study established a new procedure to preserve the in vitro viability of hBMECs isolated from gray and white matter specimens taken from neurosurge ry patients.Culturing adult hBMECs is generally considered a challenging task due to the difficult survival ex vivo and progressive reduction in proliferation of these cells.The addition of 10 nMβ-estradiol 17-acetate to the hBMEC culture medium was found to be an essential and discriminating factor promoting adhesion and proliferation both after isolation and thawing,suppo rting the well-known protective role played by estrogens on microvessels.In particular,β-estradiol 17-acetate was critical for both freshly isolated and thawed female-derived hBMECs,while it was not necessary for freshly isolated male-derived hBMECs;however,it did countera ct the decay in the viability of the latter after thawing.The tumo r-free hBMECs were thus cultured for up to 2 months and their growth efficiency was assessed befo re and after two periods of cryopreservation.Des pite the thermal stress,the hBMECs remained viable and suitable for re-freezing and storage for several months.This approach increasing in vitro viability of hBMECs opens new perspectives for the use of cryopreserved autologous hBMECs as biomimetic therapeutic tools,offering the potential to avoid additional surgical sampling for each patient. 展开更多
关键词 β-estradiol 17-acetate 17Β-ESTRADIOL CRYOPRESERVATION GENDER-SPECIFIC gray matter human brain microvascular endothelial cells surgical resections vascular protection white matter
下载PDF
通过调控VEGF信号通路探讨补肾通络方对子宫内膜损伤后HUVECs促增殖、血管生成和迁移作用
11
作者 秦屹 樊利杰 +3 位作者 任淼 李萍 吕改琴 郭亚楠 《辽宁中医杂志》 CAS 北大核心 2024年第4期153-157,共5页
目的探析补肾通络方对子宫内膜损伤后人脐静脉内皮细胞模型(human umbilical vein endothelial cells,HUVECs)促增殖、血管生成和迁移作用,及对调控血管内皮生长因子(vascular endothelial growth factor,VEGF)信号通路的影响。方法选择... 目的探析补肾通络方对子宫内膜损伤后人脐静脉内皮细胞模型(human umbilical vein endothelial cells,HUVECs)促增殖、血管生成和迁移作用,及对调控血管内皮生长因子(vascular endothelial growth factor,VEGF)信号通路的影响。方法选择2020年1月—2021年12月,购自武汉大学典型培养物保藏中心的12份HUVECs,给予50 ng/mL VEGF处理后,分别实施20%、10%、5%补肾通络方含药血清和无补肾通络方含药血清干预处理。比较补肾通络方对子宫内膜损伤后,VEGF信号通路的影响及对HUVECs增殖、迁移、血管生成的影响。结果比较20%、10%、5%补肾通络方含药血清和无补肾通络方含药血清干预后24 h的HUVECs活性和24 h细胞生长检测所得OD值,差异无统计学意义(P>0.05);20%补肾通络方含药血清组48 h、72 h的HUVECs活性、细胞生长检测所得OD值及VEGF表达量、HUVECs细胞迁移数均高于10%、5%补肾通络方含药血清组和无补肾通络方血清组,差异有统计学意义(P<0.05)。20%补肾通络方含药血清干预组的血管网状结构完整度优于10%、5%补肾通络方含药血清和无补肾通络方血清,无补肾通络方血清干预组的血管网状结构完整度最差,补肾通络方可逆转VEGF抑制细胞活性的趋势,促进HUVECs的血管形成。结论将补肾通络方应用到子宫内膜损伤中,可逆转VEGF抑制细胞活性的趋势,增强HUVECs的细胞活性,促进细胞增殖、迁移,促进血管新生,促进内皮细胞网络结构的重建,利于促进内皮细胞损伤的修复,利于子宫内膜功能的恢复,且与补肾通络方含药血清浓度呈一定量效关系。 展开更多
关键词 子宫内膜损伤 补肾通络方 人脐静脉内皮细胞 血管内皮生长因子 血管生成
下载PDF
Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia 被引量:18
12
作者 Seung Song Jong-Tae Park +4 位作者 Joo Young Na Man-Seok Park Jeong-Kil Lee Min-Cheol Lee Hyung-Seok Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第9期912-918,共7页
Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relatio... Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chronological changes of neural stem cells by 5-bromo-2′-deoxyuridine(BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1α immunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-infarct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3–7 days. Nestin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neurons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and vascular endothelial growth factor after ischemia made up the microenvironment to increase the neuronal plasticity of activated endogenous neural stem cells. Moreover, neural precursor cells after large-scale cortical injury could be recruited from the cortex nearby infarct core and subventricular zone. 展开更多
关键词 nerve regeneration brain ischemia neural stem cell neural precursor cell hypoxia-inducible factor vascular endothelial growth factor MICROENVIRONMENT PHOTOTHROMBOSIS neural regeneration
下载PDF
Vascular dysfunction in diabetes: The endothelial progenitor cells as new therapeutic strategy 被引量:13
13
作者 Adriana Georgescu 《World Journal of Diabetes》 SCIE CAS 2011年第6期92-97,共6页
The vascular endothelium is a critical determinant of dia- betes-associated vascular complications, and improving endothelial function is an important target for therapy. Diabetes mellitus contributes to endothelial c... The vascular endothelium is a critical determinant of dia- betes-associated vascular complications, and improving endothelial function is an important target for therapy. Diabetes mellitus contributes to endothelial cell injury and dysfunction. Endothelial progenitor cells (EPCs) play a critical role in maintaining endothelial function and might affect the progression of vascular disease. EPCs are essential to blood vessel formation, can differentiate into mature endothelial cells, and promote the repair of damaged endothelium. In diabetes, the circulating EPC count is low and their functionality is impaired. The me- chanisms that underlie this reduced count and impaired functionality are poorly understood. Knowledge of the status of EPCs is critical for assessing the health of the vascular system, and interventions that increase the number of EPCs and restore their angiogenic activity in diabetes may prove to be particularly beneficial. The pre-sent review outlines current thinking on EPCs' therapeutic potential in endothelial dysfunction in diabetes, as well as evidence-based perspectives regarding their use for vascular regenerative medicine. 展开更多
关键词 DIABETES MELLITUS vascular DYSFUNCTION endothelial PROGENITOR cells
下载PDF
Effect of Fuzhenghuayu decoction on vascular endothelial growth factor secretion in hepatic stellate cells 被引量:19
14
作者 Cheng Liu Cun-Meng Jiang +2 位作者 Cheng-Hai Liu Ping Liu Yi-Yang Hu From the Institute of Liver Diseases and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2002年第2期207-210,共4页
Objective: To investigate the effect of Fuzhenghuayu decoction on autocrine activation of hepatic stellate cell (HSC). Methods: The drug serum containing Fuzhenghuayu decoction was collected from normal rats, and cul-... Objective: To investigate the effect of Fuzhenghuayu decoction on autocrine activation of hepatic stellate cell (HSC). Methods: The drug serum containing Fuzhenghuayu decoction was collected from normal rats, and cul- tured with activated HSC in vitro. The conditioned medium from the drug serum treated HSC was added to primary cultured quiescent HSC. Cell prolifera- tion was assayed by tetrazolium colorimetric test, and the contents of type Ⅰ collagen and vascular endo- thelial growth factor (VEGF) in the supernatant were measured with ELISA. Results: The conditioned medium from activated HSC could stimulate the quiescent HSC proliferation and type Ⅰ collagen secretion. The drug serum inhibi- ted this stimulating action and VEGF secretion from the activated HSC. Conclusion: Fuzhenghuayu decoction acts effectively against the autocrine activation pathway of HSC. The mechanism may be associated with the inhibition of the secretion of VEGF by activated HSC. 展开更多
关键词 hepatic fibrosis type I collagen hepatic stellate cell Fuzhenghuayu decoction vascular endothelial growth factor AUTOCRINE
下载PDF
Vascular endothelial growth factor A, secreted in response to transforming growth factor-β1 under hypoxic conditions, induces autocrine effects on migration of prostate cancer cells 被引量:20
15
作者 Eric Darrington Miao Zhong Bao-Han Vo Shafiq A Khan 《Asian Journal of Andrology》 SCIE CAS CSCD 2012年第5期745-751,共7页
Hypoxia and transforming growth factor-β1 (TGF-β1) increase vascular endothelial growth factor A (VEGFA) expression in a number of malignancies. This effect of hypoxia and TGF-β1 might be responsible for tumor ... Hypoxia and transforming growth factor-β1 (TGF-β1) increase vascular endothelial growth factor A (VEGFA) expression in a number of malignancies. This effect of hypoxia and TGF-β1 might be responsible for tumor progression and metastasis of advanced prostate cancer. In the present study, TGF-β1 was shown to induce VEGFA165 secretion from both normal cell lines (HPV7 and RWPE1) and prostate cancer cell lines (DU 145 and PC3). Conversely, hypoxia-stimulated VEGFA165 secretion was observed only in prostate cancer cell lines. Hypoxia induced TGF-β1 expression in PC3 prostate cancer cells, and the TGF-β1 type I receptor (ALK5) kinase inhibitor partially blocked hypoxia-mediated VEGFA16s secretion. This effect of hypoxia provides a novel mechanism to increase VEGFA expression in prostate cancer cells. Although autocrine signaling of VEGFA has been implicated in prostate cancer progression and metastasis, the associated mechanism is poorly characterized. VEGFA activity is mediated via VEGF receptor (VEGFR) 1 (Fit-l) and 2 (FIk-I/KDR). Whereas VEGFR-1 mRNA was detected in normal prostate epithelial cells, VEGFR-2 mRNA and VEGFR protein were expressed only in PC3 cells. VEGFA165 treatment induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERKI/2) in PC3 cells but not in HPV7 cells, suggesting that the autocrine function of VEGFA may be uniquely associated with prostate cancer. Activation of VEGFR-2 by VEGFA165 was shown to enhance migration of PC3 cells. A similar effect was also observed with endogenous VEGFA induced by TGF-β1 and hypoxia. These findings illustrate that an autocrine loop of VEGFA via VEGFR-2 is critical for the tumorigenic effects of TGF-β1 and hypoxia on metastatic prostate cancers. 展开更多
关键词 cell migration HYPOXIA prostate cancer transforming growth factor-β1 (TGF-β1) vascular endothelial growth factor A(VEGFA)
下载PDF
Transplantation of vascular endothelial growth factor-modified neural stem/progenitor cells promotes the recovery of neurological function following hypoxic-ischemic brain damage 被引量:12
16
作者 Yue Yao Xiang-rong Zheng +4 位作者 Shan-shan Zhang Xia Wang Xiao-he Yu Jie-lu Tan Yu-jia Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1456-1463,共8页
Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling ... Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling protein that stimulates angiogenesis and improves neural regeneration. We hypothesized that transplantation of VEGF-transfected NSCs would alleviate hypoxic-ischemic brain damage in neo- natal rats. We produced and transfected a recombinant lentiviral vector containing the VEGF165gene into cultured NSCs. The transfected NSCs were transplanted into the left sensorimotor cortex of rats 3 days after hypoxic-ischemic brain damage. Compared with the NSCs group, VEGF mRNA and protein expression levels were increased in the transgene NSCs group, and learning and memory abilities were significantly improved at 30 days. Furthermore, histopathological changes were alleviated in these animals. Our findings indicate that transplantation of VEGF-transfected NSCs may facilitate the recovery of neurological function, and that its therapeutic effectiveness is better than that of unmodified NSCs. 展开更多
关键词 nerve regeneration vascular endothelial growth factor TRANSFECTION neural stem/progenitor cells TRANSPLANTATION hypoxic-ischemicbrain damage cerebral cortex animal model NEUROPROTECTION neural regeneration
下载PDF
Apelin and vascular endothelial growth factor are associated with mobilization of endothelial progenitor cells after acute myocardial infarction 被引量:16
17
作者 Jiaxin Ye Ping Ni +1 位作者 Lina Kang Biao Xu 《The Journal of Biomedical Research》 CAS 2012年第6期400-409,共10页
This study was designed to determine the levels of early endothelial progenitor cells (EPCs), apelin, vascu- lar endothelial growth factor (VEGF) and stromal cell-derived growth factor-1 (SDF-1) after acute myoc... This study was designed to determine the levels of early endothelial progenitor cells (EPCs), apelin, vascu- lar endothelial growth factor (VEGF) and stromal cell-derived growth factor-1 (SDF-1) after acute myocardial infarction (AMI), and to investigate the relationships between these cytokines and early EPCs. Early EPCs, de- fined as CD133+, KDR+, and CD34~ cells, were quantified by flow cytometry. The levels of early EPCs and those cytokines in AMI patients were significantly different from those with coronary artery disease or controls (P 〈 0.05). Plasma apelin levels were inversely correlated with Gensini score and early EPCs (both P 〈 0.01). Early EPCs, VEGF and SDF-1 showed different patterns of changes in AMI patients during the first 24 h. The trend in the change of early EPCs was proportionally correlated with that of VEGF (P 〈 0.05). AMI patients exhibited in- creased early EPCs with remarkably decreased apelin levels and enhanced VEGF levels. 展开更多
关键词 APELIN vascular endothelial growth factor (VEGF) stromal cell-derived growth factor-1 (SDF-1) endothelial progenitor cells (EPCs)
下载PDF
Small interfering RNA targeting PGC-1α inhibits VEGF expression and tube formation in human retinal vascular endothelial cells 被引量:6
18
作者 Jian Jiang Lu Zhang Xiao-Bo Xia 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第5期877-883,共7页
AIMTo determine whether small interfering RNA (siRNA) of PGC-1&#x003b1; could inhibit vascular endothelial growth factor (VEGF) expression and tube formation in human retinal vascular endothelial cells (hRVECs).ME... AIMTo determine whether small interfering RNA (siRNA) of PGC-1&#x003b1; could inhibit vascular endothelial growth factor (VEGF) expression and tube formation in human retinal vascular endothelial cells (hRVECs).METHODShRVECs transfected with peroxisome proliferator-activated receptor-&#x003b3; coactivator-1&#x003b1; (PGC-1&#x003b1;) siRNA were incubated for 24h and then placed into a normoxic (20%, O<sub>2</sub>) or hypoxic (1%, O<sub>2</sub>) environment for another 16h. PGC-1&#x003b1; mRNA and protein levels were detected by real-time PCR and Western blot. VEGF mRNA and protein levels were detected by real-time PCR and ELISA. Cell proliferation was evaluated by BrdU incorporation assay. Forty-eight hours after siRNA transfection, hRVECs were planted into Matrigel-coated plates and cultured under normoxic (20%, O<sub>2</sub>) or hypoxic (1%, O<sub>2</sub>) conditions for another 48h. The tube formation of hRVECs was observed under an optical microscope and quantified by counting the number of branch points and calculating the total tube length.RESULTSPGC-1&#x003b1; mRNA and protein levels were significantly reduced by PGC-1&#x003b1; siRNA, and VEGF mRNA and protein levels also decreased significantly. The percentage of BrdU-labeled cells in siPGC-1&#x003b1; groups were significantly decreased compared with control siRNA groups under normoxia and hypoxia in cell proliferation assay. In the tube formation assay, PGC-1&#x003b1; siRNA treated cells formed significantly fewer tubes.CONCLUSIONBlocking PGC-1&#x003b1; expression can inhibit VEGF expression in hRVECs and inhibit their ability to form tubes under both normoxic and hypoxic conditions. 展开更多
关键词 peroxisome proliferator-activated receptor-γ coactivator-1α vascular endothelial growth factor small interfering RNA retinal vascular endothelial cell tube formation
下载PDF
Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells 被引量:4
19
作者 Jielu Tan Xiangrong Zheng +4 位作者 Shanshan Zhang Yujia Yang Xia Wang Xiaohe Yu Le Zhong 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第19期1763-1769,共7页
Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge- nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats w... Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge- nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into five groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en- dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. The cerebral palsy model was established by ligating the left common carotid artery followed by exposure to hypox- ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. After transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas- cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for finding water and the finding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. These findings indicate that the transplantation of vascu- lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deficits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy. 展开更多
关键词 nerve regeneration vascular endothelial growth factor neural stem cells cerebral palsy animal model TRANSPLANTATION NEUROPROTECTION NSFC grant neural regeneration
下载PDF
Different Responses of Cell Cycle between Rat Vascular Smooth Muscle Cells and Vascular Endothelial Cells to Paclitaxel 被引量:3
20
作者 静亮 彭希 +2 位作者 谢敏杰 喻志源 王伟 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2014年第3期370-375,共6页
Summary: Although previous reports showed dmg-eluting stent (DES) could effectively inhibit neointima formation, in-stent restenosis (ISR) remains an important obstacle. The purpose of this study was to investiga... Summary: Although previous reports showed dmg-eluting stent (DES) could effectively inhibit neointima formation, in-stent restenosis (ISR) remains an important obstacle. The purpose of this study was to investigate different effects of paclitaxel on proliferation and cell cycle regulators between vascular smooth muscle cells (VSMCs) and vascular endothelial cells (VECs) of rats in vitro. The cultured VSMCs and VECs of rats from the same tissues were examined by using immunohistochemistry, flow cytometry and Western blotting in control and paclitaxel-treated groups. The results showed paclitaxel could effectively inhibit proliferation of VSMCs and VECs. However, as compared with VECs, prolif- eration of VSMCs in paclitaxel-treated group decreased less rapidly. The percentage of cells in G0-G1 and G2-M phases was reduced, and that in S phase increased after treatment for 72 h. The expression of cyclin D1 and B1, p27 and PCNA in VSMCs of paclitaxel-treated group was up-regulated, but that of p21 down-regulated as compared with VECs. It is concluded that there are significant differences in the expression of cell cycle regulators and proliferation rate between paclitaxel-treated VSMCs and paclitaxel-treated VECs, suggesting that the G1 S checkpoint regulated by paclitaxel may play a critical role in the development of complications of DES, which provides new strategies for treatments of ISR. 展开更多
关键词 vascular smooth muscle cells vascular endothelial cells PACLITAXEL drug-eluting stent
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部