Brain aging is typically associated with a significant decline in cognitive performance.Vascular risk factors(VRF)and subsequent atherosclerosis(AS)play a major role in this process.Brain resilience reflects the brain...Brain aging is typically associated with a significant decline in cognitive performance.Vascular risk factors(VRF)and subsequent atherosclerosis(AS)play a major role in this process.Brain resilience reflects the brain’s ability to withstand external perturbations,but the relationship of brain resilience with cognition during the aging process remains unclear.Here,we investigated how brain topological resilience(BTR)is associated with cognitive performance in the face of aging and vascular risk factors.We used data from two cross-ethnicity community cohorts,PolyvasculaR Evaluation for Cognitive Impairment and Vascular Events(PRECISE,n=2220)and Sydney Memory and Ageing Study(MAS,n=246).We conducted an attack simulation on brain structural networks based on k-shell decomposition and node degree centrality.BTR was defined based on changes in the size of the largest subgroup of the network during the simulation process.Subsequently,we explored the negative correlations of BTR with age,VRF,and AS,and its positive correlation with cognitive performance.Furthermore,using structural equation modeling(SEM),we constructed path models to analyze the directional dependencies among these variables,demonstrating that aging,AS,and VRF affect cognition by disrupting BTR.Our results also indicated the specificity of this metric,independent of brain volume.Overall,these findings underscore the supportive role of BTR on cognition during aging and highlight its potential application as an imaging marker for objective assessment of brain cognitive performance.展开更多
AIM: To measure the retinal vessels of primary open angle glaucoma(POAG) patients on spectral domain optical coherence tomography(SD-OCT) with a full-width at half-maximum(FWHM) algorithm to better explore their struc...AIM: To measure the retinal vessels of primary open angle glaucoma(POAG) patients on spectral domain optical coherence tomography(SD-OCT) with a full-width at half-maximum(FWHM) algorithm to better explore their structural changes in the pathogenesis of POAG.METHODS: In this retrospective case-control study, the right eyes of 32 patients with POAG and 30 healthy individuals were routinely selected.Images of the supratemporal and infratemporal retinal vessels in the B zones were obtained by SD-OCT, and the edges of the vessels were identified by the FWHM method.The internal and external diameters, wall thickness(WT), wall cross-sectional area(WCSA) and wall-to-lumen ratio(WLR) of the blood vessels were studied.RESULTS: Compared with the healthy control group, the POAG group showed a significantly reduced retinal arteriolar outer diameter(RAOD), retinal arteriolar lumen diameter(RALD) and WSCA in the supratemporal(124.22±12.42 vs 138.32±10.73 μm, 96.09±11.09 vs 108.53±9.89 μm,and 4762.02 ± 913.51 vs 5785.75 ± 114 8.28 μm^(2), respectively, all P<0.05) and infratemporal regions(125.01±15.55 vs 141.57±10.77 μm, 96.27±13.29 vs 110.83 ± 10.99 μm, and 4925.56 ± 1302.88 vs 6087.78±1061.55 μm^(2), all P<0.05).The arteriolar WT and WLR were not significantly different between the POAG and control groups, nor were the retinal venular outer diameter(RVOD), retinal venular lumen diameter(RVLD) or venular WT in the supratemporal or infratemporal region.There was a positive correlation between the arteriolar parameters and visual function.CONCLUSION: In POAG, narrowing of the supratemporal and infratemporal arterioles and a significant reduction in the WSCA is observed, while the arteriolar WT and WLR do not change.Among the venular parameters, the external diameter, internal diameter, WT, WLR, and WSCA of the venules are not affected.展开更多
基金National Natural Science Foundation of China(82372040 and 82271329)National Key Research and Development Program of China(2022YFC2504900and 2016YFC0901002)+3 种基金Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2019-I2M-5-029)Key Science&Technologies R&D Program of Lishui City(2019ZDYF18)AstraZeneca Investment(China)and Beijing Natural Science Foundation(Z200016)The Sydney Memory and Ageing Study has been funded by three National Health&Medical Research Council(NHMRC)Program Grants(ID350833,ID568969,and APP1093083)。
文摘Brain aging is typically associated with a significant decline in cognitive performance.Vascular risk factors(VRF)and subsequent atherosclerosis(AS)play a major role in this process.Brain resilience reflects the brain’s ability to withstand external perturbations,but the relationship of brain resilience with cognition during the aging process remains unclear.Here,we investigated how brain topological resilience(BTR)is associated with cognitive performance in the face of aging and vascular risk factors.We used data from two cross-ethnicity community cohorts,PolyvasculaR Evaluation for Cognitive Impairment and Vascular Events(PRECISE,n=2220)and Sydney Memory and Ageing Study(MAS,n=246).We conducted an attack simulation on brain structural networks based on k-shell decomposition and node degree centrality.BTR was defined based on changes in the size of the largest subgroup of the network during the simulation process.Subsequently,we explored the negative correlations of BTR with age,VRF,and AS,and its positive correlation with cognitive performance.Furthermore,using structural equation modeling(SEM),we constructed path models to analyze the directional dependencies among these variables,demonstrating that aging,AS,and VRF affect cognition by disrupting BTR.Our results also indicated the specificity of this metric,independent of brain volume.Overall,these findings underscore the supportive role of BTR on cognition during aging and highlight its potential application as an imaging marker for objective assessment of brain cognitive performance.
基金Supported by Zhejiang Province Public Welfare Technology Application Research Project (No.LGF22H120017)Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialists (No.SZGSP014)+1 种基金Sanming Project of Medicine in Shenzhen (No.SZSM202011015)Shenzhen Fundamental Research Program (No.JCYJ20220818103207015)。
文摘AIM: To measure the retinal vessels of primary open angle glaucoma(POAG) patients on spectral domain optical coherence tomography(SD-OCT) with a full-width at half-maximum(FWHM) algorithm to better explore their structural changes in the pathogenesis of POAG.METHODS: In this retrospective case-control study, the right eyes of 32 patients with POAG and 30 healthy individuals were routinely selected.Images of the supratemporal and infratemporal retinal vessels in the B zones were obtained by SD-OCT, and the edges of the vessels were identified by the FWHM method.The internal and external diameters, wall thickness(WT), wall cross-sectional area(WCSA) and wall-to-lumen ratio(WLR) of the blood vessels were studied.RESULTS: Compared with the healthy control group, the POAG group showed a significantly reduced retinal arteriolar outer diameter(RAOD), retinal arteriolar lumen diameter(RALD) and WSCA in the supratemporal(124.22±12.42 vs 138.32±10.73 μm, 96.09±11.09 vs 108.53±9.89 μm,and 4762.02 ± 913.51 vs 5785.75 ± 114 8.28 μm^(2), respectively, all P<0.05) and infratemporal regions(125.01±15.55 vs 141.57±10.77 μm, 96.27±13.29 vs 110.83 ± 10.99 μm, and 4925.56 ± 1302.88 vs 6087.78±1061.55 μm^(2), all P<0.05).The arteriolar WT and WLR were not significantly different between the POAG and control groups, nor were the retinal venular outer diameter(RVOD), retinal venular lumen diameter(RVLD) or venular WT in the supratemporal or infratemporal region.There was a positive correlation between the arteriolar parameters and visual function.CONCLUSION: In POAG, narrowing of the supratemporal and infratemporal arterioles and a significant reduction in the WSCA is observed, while the arteriolar WT and WLR do not change.Among the venular parameters, the external diameter, internal diameter, WT, WLR, and WSCA of the venules are not affected.