针对滚动轴承在强背景噪声干扰下振动信号故障特征难以提取,以及实际运行中因故障样本缺乏而影响故障诊断准确性的问题,提出了基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)的AR模型振动信号特征提取,与支持向量数据...针对滚动轴承在强背景噪声干扰下振动信号故障特征难以提取,以及实际运行中因故障样本缺乏而影响故障诊断准确性的问题,提出了基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)的AR模型振动信号特征提取,与支持向量数据域描述(Support Vector Data Description,SVDD)相结合的轴承故障诊断方法.首先用ITD将振动信号分解成一系列的固有旋转(Proper Rotation,PR)分量,然后对每一个PR分量建立AR模型,提取模型参数和残差方差构造特征向量,用以建立轴承正常运行的SVDD模型,并以振动信号特征向量偏离SVDD模型的程度来判断轴承的运行状态.将该方法应用于滚动轴承的故障诊断,实验证明了所提方法的有效性.展开更多
基于时变参数向量自回归(time-varying parameter-vector auto regression,TVPVAR)模型,考察了经济政策不确定性、投资者情绪与股价同步性之间的时变关联性.模型估计结果表明,经济政策不确定性对股价同步性主要表现为中短期的正向影响,...基于时变参数向量自回归(time-varying parameter-vector auto regression,TVPVAR)模型,考察了经济政策不确定性、投资者情绪与股价同步性之间的时变关联性.模型估计结果表明,经济政策不确定性对股价同步性主要表现为中短期的正向影响,且波动比较明显,长期影响则相对较弱;投资者情绪对股价同步性表现为负向影响,且短期影响最为明显,长期影响则较弱.时点脉冲函数结果显示,在不同时间点上,股价同步性对经济政策不确定性的冲击具有正向响应,对投资者情绪的冲击具有负向响应,且不同时间点的响应程度和响应时间均存在差异.这些结论为进一步完善政策调控体系,规范和引导投资者行为,促进市场理性化提供了思路.展开更多
文摘针对滚动轴承在强背景噪声干扰下振动信号故障特征难以提取,以及实际运行中因故障样本缺乏而影响故障诊断准确性的问题,提出了基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)的AR模型振动信号特征提取,与支持向量数据域描述(Support Vector Data Description,SVDD)相结合的轴承故障诊断方法.首先用ITD将振动信号分解成一系列的固有旋转(Proper Rotation,PR)分量,然后对每一个PR分量建立AR模型,提取模型参数和残差方差构造特征向量,用以建立轴承正常运行的SVDD模型,并以振动信号特征向量偏离SVDD模型的程度来判断轴承的运行状态.将该方法应用于滚动轴承的故障诊断,实验证明了所提方法的有效性.
文摘基于时变参数向量自回归(time-varying parameter-vector auto regression,TVPVAR)模型,考察了经济政策不确定性、投资者情绪与股价同步性之间的时变关联性.模型估计结果表明,经济政策不确定性对股价同步性主要表现为中短期的正向影响,且波动比较明显,长期影响则相对较弱;投资者情绪对股价同步性表现为负向影响,且短期影响最为明显,长期影响则较弱.时点脉冲函数结果显示,在不同时间点上,股价同步性对经济政策不确定性的冲击具有正向响应,对投资者情绪的冲击具有负向响应,且不同时间点的响应程度和响应时间均存在差异.这些结论为进一步完善政策调控体系,规范和引导投资者行为,促进市场理性化提供了思路.