期刊文献+
共找到6,777篇文章
< 1 2 250 >
每页显示 20 50 100
Some Results for Exact Support Recovery of Block Joint Sparse Matrix via Block Multiple Measurement Vectors Algorithm
1
作者 Yingna Pan Pingping Zhang 《Journal of Applied Mathematics and Physics》 2023年第4期1098-1112,共15页
Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for a... Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for accurate support recovery of the block K-joint sparse matrix via the BMMV algorithm in the noisy case. Furthermore, we show the optimality of the condition we proposed in the absence of noise when the problem reduces to single measurement vector case. 展开更多
关键词 Support Recovery Compressed Sensing Block Multiple Measurement vectors algorithm Block Restricted Isometry Property
下载PDF
Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms
2
作者 Afnan M.Alhassan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2207-2223,共17页
Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)method... Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM). 展开更多
关键词 Breast arterial calcification cardiovascular disease semantic segmentation transfer learning enhanced wolf pack algorithm and modified support vector machine
下载PDF
Using Audiometric Data to Weigh and Prioritize Factors that Affect Workers’ Hearing Loss through Support Vector Machine (SVM) Algorithm 被引量:3
3
作者 Hossein ElahiShirvan MohammadReza Ghotbi-Ravandi +1 位作者 Sajad Zare Mostafa Ghazizadeh Ahsaee 《Sound & Vibration》 EI 2020年第2期99-112,共14页
Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric... Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss. 展开更多
关键词 Noise modeling hearing loss data mining support vector machine algorithm
下载PDF
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
4
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 Support vector machine Genetic algorithm Nonlinear model predictive control Neural network Modeling
下载PDF
A hybrid quantum encoding algorithm of vector quantization for image compression 被引量:4
5
作者 庞朝阳 周正威 郭光灿 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第12期3039-3043,共5页
Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability... Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm. 展开更多
关键词 vector quantization Grover's algorithm image compression quantum algorithm
下载PDF
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:4
6
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
下载PDF
Vector Dominating Multi-objective Evolution Algorithm for Aerodynamic-Structure Integrative Design of Wind Turbine Blade 被引量:1
7
作者 Wang Long Wang Tongguang +1 位作者 Wu Jianghai Ke Shitang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期1-8,共8页
A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynam... A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynamic-structural integrative design of wind turbine blades.A set of virtual vectors are elaborately constructed,guiding population to fast move forward to the Pareto optimal front and dominating the distribution uniformity with high efficiency.In comparison to conventional evolution algorithms,VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation when handling complex problems of multi-variables,multi-objectives and multi-constraints.As an example,a 1.5 MW wind turbine blade is subsequently designed taking the maximum annual energy production,the minimum blade mass,and the minimum blade root thrust as the optimization objectives.The results show that the Pareto optimal set can be obtained in one single simulation run and that the obtained solutions in the optimal set are distributed quite uniformly,maximally maintaining the population diversity.The efficiency of VD-MOEA has been elevated by two orders of magnitude compared with the classical NSGA-II.This provides a reliable high-performance optimization approach for the aerodynamic-structural integrative design of wind turbine blade. 展开更多
关键词 wind turbine multi-objective optimization vector method evolution algorithm
下载PDF
Photovoltaic Models Parameters Estimation Based on Weighted Mean of Vectors 被引量:1
8
作者 Mohamed Elnagi Salah Kamel +1 位作者 Abdelhady Ramadan Mohamed F.Elnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第3期5229-5250,共22页
Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the ... Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms. 展开更多
关键词 Photovoltaic(PV)modules weIghted meaN oF vectors algorithm(INFO) renewable energy static PV models dynamic PV models solar energy
下载PDF
New regularization method and iteratively reweighted algorithm for sparse vector recovery 被引量:1
9
作者 Wei ZHU Hui ZHANG Lizhi CHENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期157-172,共16页
Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design... Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design an iterative algorithm,namely the iteratively reweighted algorithm(IR-algorithm),for efficiently computing the sparse solutions to the proposed regularization model.The convergence of the IR-algorithm and the setting of the regularization parameters are analyzed at length.Finally,we present numerical examples to illustrate the features of the new regularization and algorithm. 展开更多
关键词 regularization method iteratively reweighted algorithm(IR-algorithm) sparse vector recovery
下载PDF
Speech Analysis for Diagnosis of Parkinson’s Disease Using Genetic Algorithm and Support Vector Machine 被引量:1
10
作者 Mohammad Shahbakhi Danial Taheri Far Ehsan Tahami 《Journal of Biomedical Science and Engineering》 2014年第4期147-156,共10页
Parkinson’s disease (PD) is the most common disease of motor system degeneration that occurs when the dopamine-producing cells are damaged in substantia nigra. To detect PD, various signals have been investigated, in... Parkinson’s disease (PD) is the most common disease of motor system degeneration that occurs when the dopamine-producing cells are damaged in substantia nigra. To detect PD, various signals have been investigated, including EEG, gait and speech. Since approximately 90 percent of the people with PD suffer from speech disorders, speech analysis is considered as the most common technique for this aim. This paper proposes a new algorithm for diagnosing of Parkinson’s disease based on voice analysis. In the first step, genetic algorithm (GA) is undertaken for selecting optimized features from all extracted features. Afterwards a network based on support vector machine (SVM) is used for classification between healthy and people with Parkinson. The dataset of this research is composed of a range of biomedical voice signals from 31 people, 23 with Parkinson’s disease and 8 healthy people. The subjects were asked to pronounce letter “A” for 3 seconds. 22 linear and non-linear features were extracted from the signals that 14 features were based on F0 (fundamental frequency or pitch), jitter, shimmer and noise to harmonics ratio, which are main factors in voice signal. Because changing in these factors is noticeable for the people with PD, optimized features were selected among them. Of the various numbers of optimized features, the data classification was investigated. Results show that the classification accuracy percent of 94.50 per 4 optimized features, the accuracy percent of 93.66 per 7 optimized features and the accuracy percent of 94.22 per 9 optimized features, could be achieved. It can be observed that the best classification accuracy may be achieved using Fhi (Hz), Fho (Hz), jitter (RAP) and shimmer (APQ5). 展开更多
关键词 Parkinson’s Disease SPEECH Analysis GENETIC algorithm Support vector Machine
下载PDF
Parameters Optimization Using Genetic Algorithms in Support Vector Regression for Sales Volume Forecasting 被引量:1
11
作者 Fong-Ching Yuan 《Applied Mathematics》 2012年第10期1480-1486,共7页
Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are ... Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are dependent on the sales volume forecasting in some way. If the sales volume forecasting is sloppily done, then the rest of the budgeting process is largely a waste of time. Therefore, the sales volume forecasting process is a critical one for most businesses, and also a difficult area of management. Most of researches and companies use the statistical methods, regression analysis, or sophisticated computer simulations to analyze the sales volume forecasting. Recently, various prediction Artificial Intelligent (AI) techniques have been proposed in forecasting. Support Vector Regression (SVR) has been applied successfully to solve problems in numerous fields and proved to be a better prediction model. However, the select of appropriate SVR parameters is difficult. Therefore, to improve the accuracy of SVR, a hybrid intelligent support system based on evolutionary computation to solve the difficulties involved with the parameters selection is presented in this research. Genetic Algorithms (GAs) are used to optimize free parameters of SVR. The experimental results indicate that GA-SVR can achieve better forecasting accuracy and performance than traditional SVR and artificial neural network (ANN) prediction models in sales volume forecasting. 展开更多
关键词 BUDGETING Planning SALES Volume Forecasting Artificial Intelligent Support vector Regression GENETIC algorithms Artificial NEURAL Network
下载PDF
Parameter selection of support vector regression based on hybrid optimization algorithm and its application 被引量:9
12
作者 Xin WANG Chunhua YANG +1 位作者 Bin QIN Weihua GUI 《控制理论与应用(英文版)》 EI 2005年第4期371-376,共6页
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters... Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods, 展开更多
关键词 Support vector regression Parameters tuning Hybrid optimization Genetic algorithm(GA)
下载PDF
Novel Real-Time Seam Tracking Algorithm Based on Vector Angle and Least Square Method 被引量:1
13
作者 Guanhao Liang Qingsheng Luo +1 位作者 Zhuo Ge Xiaoqing Guan 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期150-157,共8页
Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i... Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning. 展开更多
关键词 real-time seam tracking real-time seam detection laser scanner vector angle leastsquare method algorithm research
下载PDF
The Comparison between Random Forest and Support Vector Machine Algorithm for Predicting β-Hairpin Motifs in Proteins
14
作者 Shaochun Jia Xiuzhen Hu Lixia Sun 《Engineering(科研)》 2013年第10期391-395,共5页
Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 ... Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively. 展开更多
关键词 Random FOREST algorithm Support vector Machine algorithm β-Hairpin MOTIF INCREMENT of Diversity SCORING Function Predicted Secondary Structure Information
下载PDF
Research on Full Vector Dynamic Balancing Algorithm for Rotors
15
作者 YANG Zhi-han WANG Wen-chao 《International Journal of Plant Engineering and Management》 2018年第1期18-23,共6页
Influence coefficient method and the modal balancing method are often used in the dynamic balancing in the past days. These methods sometimes exist a lot of big measurement errors. So, in order to make these errors mu... Influence coefficient method and the modal balancing method are often used in the dynamic balancing in the past days. These methods sometimes exist a lot of big measurement errors. So, in order to make these errors much smaller, and to use the vibration information of the rotor more sufficiently, at last, we put forward the full vector dynamic balancing algorithm. Though the theoretical analysis, and the experiment tests, we can compare with the new method and the old method , study the relationship between the dynamic balancing and the rotation equipment, and the direction of the development. The full vector dynamic balancing algorithm theory can be inferred from the Jeffcott rotor. To compare with the methods which are mentioned before, we can find that the full vector dynamic balancing algorithm is much better than the influence coefficient method and the modal balancing method. We can use the MATLAB program to prove that the full vector dynamic balancing algorithm is much better. So the conclusion is completely right. 展开更多
关键词 full vector dynamic balancing algorithm unbalanced response balancing effect MATLAB
下载PDF
Using the Support Vector Machine Algorithm to Predict β-Turn Types in Proteins
16
作者 Xiaobo Shi Xiuzhen Hu 《Engineering(科研)》 2013年第10期386-390,共5页
The structure and function of proteins are closely related, and protein structure decides its function, therefore protein structure prediction is quite important.β-turns are important components of protein secondary ... The structure and function of proteins are closely related, and protein structure decides its function, therefore protein structure prediction is quite important.β-turns are important components of protein secondary structure. So development of an accurate prediction method ofβ-turn types is very necessary. In this paper, we used the composite vector with position conservation scoring function, increment of diversity and predictive secondary structure information as the input parameter of support vector machine algorithm for predicting theβ-turn types in the database of 426 protein chains, obtained the overall prediction accuracy of 95.6%, 97.8%, 97.0%, 98.9%, 99.2%, 91.8%, 99.4% and 83.9% with the Matthews Correlation Coefficient values of 0.74, 0.68, 0.20, 0.49, 0.23, 0.47, 0.49 and 0.53 for types I, II, VIII, I’, II’, IV, VI and nonturn respectively, which is better than other prediction. 展开更多
关键词 Support vector Machine algorithm INCREMENT of Diversity VALUE Position Conservation SCORING Function VALUE Secondary Structure Information
下载PDF
Assessing supply chain performance using genetic algorithm and support vector machine
17
作者 ZHAO Yu 《Ecological Economy》 2019年第2期101-108,共8页
The rough set-genetic support vector machine(SVM) model is applied to supply chain performance evaluation. First, the rough set theory is used to remove the redundant factors that affect the performance evaluation of ... The rough set-genetic support vector machine(SVM) model is applied to supply chain performance evaluation. First, the rough set theory is used to remove the redundant factors that affect the performance evaluation of supply chain to obtain the core influencing factors. Then the support vector machine is used to extract the core influencing factors to predict the level of supply chain performance. In the process of SVM classification, the genetic algorithm is used to optimize the parameters of the SVM algorithm to obtain the best parameter model, and then the supply chain performance evaluation level is predicted. Finally, an example is used to predict this model, and compared with the result of using only rough set-support vector machine to predict. The results show that the method of rough set-genetic support vector machine can predict the level of supply chain performance more accurately and the prediction result is more realistic, which is a scientific and feasible method. 展开更多
关键词 supply CHAIN performance evaluation ROUGH set theory support vector machine GENETIC algorithm
下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
18
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 Gene selection Support vector machine (SVM) RECURSIVE feature ELIMINATION (RFE) GENETIC algorithm (GA) Parameter SELECTION
下载PDF
The Levels-Recursive Algorithm for Vector Valued Interpolants by Triple Branched Continued Fractions
19
作者 Shuo Tang Xuhui Wang 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2006年第2期137-142,共6页
A kind of triple branched continued fractions is defined by making use of Samel- son inverse and Thiele-type partial inverted di?erences [1]. In this paper, a levels-recursive algorithm is constructed and a numerical ... A kind of triple branched continued fractions is defined by making use of Samel- son inverse and Thiele-type partial inverted di?erences [1]. In this paper, a levels-recursive algorithm is constructed and a numerical example is given. 展开更多
关键词 Levels-Recursive算法 向量估计 连分数 部分逆
下载PDF
基于频率响应与图像特征提取的动车组变压器绕组状态诊断方法研究 被引量:1
20
作者 郭蕾 蔡育宏 +3 位作者 张俊 赵晨 王东阳 周利军 《铁道学报》 EI CAS CSCD 北大核心 2024年第4期47-56,共10页
动车组变压器是保障高速铁路稳定运行的核心设备,频率响应法是目前检测变压器绕组状态的有效方法。为提升车载变压器绕组状态诊断的准确性,结合暂态信号与频率响应法提出基于频率响应与图像特征提取的动车组变压器绕组状态诊断方法。搭... 动车组变压器是保障高速铁路稳定运行的核心设备,频率响应法是目前检测变压器绕组状态的有效方法。为提升车载变压器绕组状态诊断的准确性,结合暂态信号与频率响应法提出基于频率响应与图像特征提取的动车组变压器绕组状态诊断方法。搭建试验车载变压器绕组故障模拟平台,获取不同故障类型和故障位置的频响曲线,利用类Gram矩阵结合幅频和相频曲线信息,再利用密度分层法转换为伪彩色图,提取对应的灰度共生矩阵和灰度差分矩阵特征值,根据鹈鹕优化支持向量机方法对绕组故障进行诊断。试验结果表明:车载变压器绕组故障发生时,伪彩色图能够反映出故障信息,有利于图像分析和特征提取,采用基于频率响应与图像特征提取的动车组变压器绕组状态诊断方法能够识别车载变压器绕组的典型故障类型和位置。 展开更多
关键词 车载变压器 绕组故障 频率响应 伪彩色图 图像特征 支持向量机 鹈鹕算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部