Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able t...Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able to carry macromolecules across the blood-brain barrier and into the brain.Here,we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin(Tf) and polyethylene glycol(PEG),and carrying BDNF modified with cytomegalovirus promoter(pC MV) or glial fibrillary acidic protein promoter(p GFAP)(Tf-p CMV-BDNF-PEG and Tf-p GFAP-BDNF-PEG,respectively).Both liposomes were able to traverse the blood-brain barrier,and BDNF was mainly expressed in the cerebral cortex.BDNF expression in the cerebral cortex was higher in the Tf-p GFAP-BDNF-PEG group than in the Tf-p CMV-BDNF-PEG group.This study demonstrates the successful construction of a non-virus targeted liposome,Tf-p GFAP-BDNF-PEG,which crosses the blood-brain barrier and is distributed in the cerebral cortex.Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain.展开更多
This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state ch...This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam-Berry optical dements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-foptical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.展开更多
Compared with endoreversible heat engine with pure heat transfer and endoreversible isothermal chemical engine with pure mass transfer,endoreversible non-isothermal chemical engine(ENICE)is a more reasonable model of ...Compared with endoreversible heat engine with pure heat transfer and endoreversible isothermal chemical engine with pure mass transfer,endoreversible non-isothermal chemical engine(ENICE)is a more reasonable model of practical mass exchanger,solid device and chemo-electric systems.There exists heat and mass transfer(HMT)simultaneously between working fluid and chemical potential reservoir in ENICE.There is coupled HMT effect that in ENICE should be considered.There are two ways to consider this coupled effect.One is based on Onsager equations,and another is based on Lewis analogy.For the mathematical and physical description of the above HMT process,the model using Onsager equations are more appropriate in the linear HMT region not far from the equilibrium state,while that based on Lewis analogy is more appropriate in nonlinear HMT region far from the equilibrium state.Different from the previous research on the power optimization of ENICEs with Onsager equations,this paper optimizes power and efficiency of ENICE based on Lewis analogy.HMT processes are assumed to obey Newtonian heat transfer law(q∝ΔT,and T is temperature)and Fick's diffusive mass transfer law(g∝Δc,and c is concentration),respectively.Analytical results of power output and corresponding vector efficiency(η_(T)andη_(μ))of ENICE are obtained,which provide important parallel results with those based on Onsager equations.They include special cases for endoreversible Carnot heat engine with q∝ΔT and endoreversible isothermal chemical engine with g∝Δc.Adopting Lewis analogy in the modelling of ENICEs with simultaneous HMT is an important work.It provides important analytical and numerical results different from those with Onsager equations obtained previously and enriches the research contents of FTT.The research results in this paper have a certain guiding significance for the optimal designs of single irreversible NICEs,multistage NICE systems,practical mass exchangers,solid devices,chemo-electric systems,and so on.展开更多
基金funded by a grant from Jilin Province Development and Reform Commission of China,No.JF2012C008-3Jilin Province Industrial Innovation Special Fund Project of China,No.JF2016C050-2the Joint Project between Jilin University and Jilin You-bang Pharmaceutical Co.Ltd.,No.2015YX323
文摘Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able to carry macromolecules across the blood-brain barrier and into the brain.Here,we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin(Tf) and polyethylene glycol(PEG),and carrying BDNF modified with cytomegalovirus promoter(pC MV) or glial fibrillary acidic protein promoter(p GFAP)(Tf-p CMV-BDNF-PEG and Tf-p GFAP-BDNF-PEG,respectively).Both liposomes were able to traverse the blood-brain barrier,and BDNF was mainly expressed in the cerebral cortex.BDNF expression in the cerebral cortex was higher in the Tf-p GFAP-BDNF-PEG group than in the Tf-p CMV-BDNF-PEG group.This study demonstrates the successful construction of a non-virus targeted liposome,Tf-p GFAP-BDNF-PEG,which crosses the blood-brain barrier and is distributed in the cerebral cortex.Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain.
基金National Natural Science Foundation of China(NSFC)(61490710,61705132,61775142)Science and Technology Planning Project of Guangdong Province(2016B050501005)Specialized Research Fund for the Shenzhen Strategic Emerging Industries Development(JCYJ20170412105812811)
文摘This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam-Berry optical dements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-foptical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.
基金supported by the National Natural Science Foundation of China(Grant Nos.51976235 and 52171317)。
文摘Compared with endoreversible heat engine with pure heat transfer and endoreversible isothermal chemical engine with pure mass transfer,endoreversible non-isothermal chemical engine(ENICE)is a more reasonable model of practical mass exchanger,solid device and chemo-electric systems.There exists heat and mass transfer(HMT)simultaneously between working fluid and chemical potential reservoir in ENICE.There is coupled HMT effect that in ENICE should be considered.There are two ways to consider this coupled effect.One is based on Onsager equations,and another is based on Lewis analogy.For the mathematical and physical description of the above HMT process,the model using Onsager equations are more appropriate in the linear HMT region not far from the equilibrium state,while that based on Lewis analogy is more appropriate in nonlinear HMT region far from the equilibrium state.Different from the previous research on the power optimization of ENICEs with Onsager equations,this paper optimizes power and efficiency of ENICE based on Lewis analogy.HMT processes are assumed to obey Newtonian heat transfer law(q∝ΔT,and T is temperature)and Fick's diffusive mass transfer law(g∝Δc,and c is concentration),respectively.Analytical results of power output and corresponding vector efficiency(η_(T)andη_(μ))of ENICE are obtained,which provide important parallel results with those based on Onsager equations.They include special cases for endoreversible Carnot heat engine with q∝ΔT and endoreversible isothermal chemical engine with g∝Δc.Adopting Lewis analogy in the modelling of ENICEs with simultaneous HMT is an important work.It provides important analytical and numerical results different from those with Onsager equations obtained previously and enriches the research contents of FTT.The research results in this paper have a certain guiding significance for the optimal designs of single irreversible NICEs,multistage NICE systems,practical mass exchangers,solid devices,chemo-electric systems,and so on.