As a widely used rock excavation method in civil and mining construction works, the blasting operations and theinduced side effects are always investigated by the existing studies. The occurrence of flyrock is regarde...As a widely used rock excavation method in civil and mining construction works, the blasting operations and theinduced side effects are always investigated by the existing studies. The occurrence of flyrock is regarded as one ofthe most important issues induced by blasting operations, since the accurate prediction of which is crucial fordelineating safety zone. For this purpose, this study developed a flyrock prediction model based on 234 sets ofblasting data collected from Sugun Copper Mine site. A stacked multiple kernel support vector machine (stackedMK-SVM) model was proposed for flyrock prediction. The proposed stacked structure can effectively improve themodel performance by addressing the importance level of different features. For comparison purpose, 6 othermachine learning models were developed, including SVM, MK-SVM, Lagragian Twin SVM (LTSVM), ArtificialNeural Network (ANN), Random Forest (RF) and M5 Tree. This study implemented a 5-fold cross validationprocess for hyperparameters tuning purpose. According to the evaluation results, the proposed stacked MK-SVMmodel achieved the best overall performance, with RMSE of 1.73 and 1.74, MAE of 0.58 and 1.08, VAF of 98.95and 99.25 in training and testing phase, respectively.展开更多
文摘As a widely used rock excavation method in civil and mining construction works, the blasting operations and theinduced side effects are always investigated by the existing studies. The occurrence of flyrock is regarded as one ofthe most important issues induced by blasting operations, since the accurate prediction of which is crucial fordelineating safety zone. For this purpose, this study developed a flyrock prediction model based on 234 sets ofblasting data collected from Sugun Copper Mine site. A stacked multiple kernel support vector machine (stackedMK-SVM) model was proposed for flyrock prediction. The proposed stacked structure can effectively improve themodel performance by addressing the importance level of different features. For comparison purpose, 6 othermachine learning models were developed, including SVM, MK-SVM, Lagragian Twin SVM (LTSVM), ArtificialNeural Network (ANN), Random Forest (RF) and M5 Tree. This study implemented a 5-fold cross validationprocess for hyperparameters tuning purpose. According to the evaluation results, the proposed stacked MK-SVMmodel achieved the best overall performance, with RMSE of 1.73 and 1.74, MAE of 0.58 and 1.08, VAF of 98.95and 99.25 in training and testing phase, respectively.